
M.Sc. Thesis
Master of Science in Engineering Acoustics

Sensitivity of the sound zones problem to
sources of error

Colin Benker (s190247)
Kongens Lyngby, February 1, 2021



DTU Acoustic Technology
Department of Electrical Engineering
Technical University of Denmark

Elektrovej
Building 352
2800 Kongens Lyngby, Denmark
Phone (+45) 4525 3949
www.act.elektro.dtu.dk



Abstract
Sound zones systems generate a sound field in a spatially confined zone while atten-
uating the sound energy in another predefined zone within the same acoustic space.
The goal of these systems is to enable different listeners to enjoy their individual
audio content without disrupting each other or having to wear headphones.

It was shown in the literature, that the performance of sound zones is sensitive
to changes in the physical environment, such as changes in the speed of sound due
to temperature changes [OM17] or loudspeaker transfer function changes [Ma+18;
Ma+19; PCK13]. However, current research papers do not provide an estimation of
how severe the influence of transfer function errors is on the sound zones problem at
low frequencies in domestic rooms. This thesis provides an error model, that simulates
transfer function errors based on physical properties of a room and loudspeakers. This
error model is incorporated in a Monte-Carlo simulation to provide an evaluation of
the effect of transfer function changes on the acoustic separation between the zones.
This effect is evaluated in terms of the acoustic contrast, an energy ratio between
the two sound zones [CK02]. The frequency range covered in this thesis is the low
frequency range from 20 to 300 Hz.

The results from the simulations suggest that changes in room temperature have
a significant impact on the acoustic contrast in the whole frequency range, whereas
the impact of loudspeaker transfer function changes is most prominent at very low
frequencies below 100 Hz. Above 150 Hz the loudspeaker errors only decreased the
performance marginally.

Further, this thesis investigated how the sound zones system can be made more
robust to transfer function changes. A main conclusion from the conducted simula-
tions is, that the more information about the distributions of the underlying transfer
function changes is accessible, the better the system can be regularized.



ii



Preface
This Master’s thesis was prepared at the Acoustic Technology group in the department
of Electrical Engineering at the Technical University of Denmark in fulfillment of the
requirements for acquiring a M.Sc. degree in Engineering Acoustics.

Kongens Lyngby, February 1, 2021

Colin Benker (s190247)



iv



Acknowledgements
I would like to thank Martin Bo Møller and Efren Fernandez-Grande for the amazing
supervision of this thesis. The frequent discussions we had inspired me immensely and
had an incredibly valuable impact on the course of this project. I am very grateful
for all the time they dedicated to giving me scientific insights and assisting me in
shaping this thesis.



vi



List of acronyms
AC Acoustic Contrast

ACC Acoustic Contrast Control

MC Monte-Carlo

OLS Ordinary Least Squares

PM Pressure Matching

PMO Probability Model Optimization

RTLS Regularized Total Least Squares

RR Ridge Regression

SPL Sound Pressure Level

SVD Singular Value Decomposition

TF Transfer Function

TLS Total Least Squares



viii



List of symbols
In general, scalars are represented by italic lower- or uppercase letters (e.g. a or A),
one-dimensional vectors are represented by lowercase bold letters (e.g a), and higher
order matrices are denoted by upper case bold letters (e.g. A).

Signal Path

hl,s Loudspeaker transfer function of loudspeaker l
hml,r Room transfer function
l Index of loudspeaker
L Number of loudspeakers
m Index of microphone
M Number of microphones
pm Sound pressure at position of microphone m
ql Volume velocity emitted by loudspeaker l
Uout Output voltage of Amplifier
wl Sound Zones Filter of loudspeaker l
x Input Signal

Loudspeaker Transfer Function

Bl Force factor of coil-magnet assembly
CAB Air-load compliance in the box
CAS Compliance of suspension
CAT Total acoustic compliance
ic Current flowing through voice coil
MAB Acoustic mass of air moving inside box
MAF Acoustic mass of air oscillating on the front of diaphragm
MAS Acoustic mass of moving coil and diaphragm
MAT Total moving acoustic mass
MAT Total acoustic mass moving
pD Pressure difference inside and outside box
QT C Total closed box quality factor



x List of symbols

RAS Resistance modelling mechanical losses in diaphragm
RAT Total acoustic resistance
RE Initial DC-Resistance of coil
R̃E Temperature dependent DC-Resistance of coil
s Complex frequency
SD Surface area of diaphragm
Ucoil Voltage induced in coil
vD Velocity of diaphragm
ωc Total closed box angular resonance frequency
ZAB Acoustical impedance inside the box
ZAF Acoustical impedance at the front of the box
ZAT Sum of acoustic impedances
ZE Electrical impedance
ZM Mechanical impedance of system

Room Transfer Function

c Speed of sound
f Frequency
Gml Green’s function between microphone m and loudspeaker l
j Imaginary unit,

√
−1

k Wave number
kν Natural wavenumber of mode ν
rl Position of loudspeaker l
rm Position of microphone m
δ(·) Dirac delta function
ψν Mode shape of mode ν
ρ0 Density of air
τν Time constant of mode ν
ω Angular frequency

Sound Zones Problem

p Vector of sound pressures pm

Hr Room transfer function matrix
hs Vector of speaker transfer functions hl,s

w Vector of sound zones filters wl

H Total transfer function matrix
I Identity matrix



List of symbols xi

Least Squares Problem

A Data matrix
a1,a2, .. Column vectors of A
b Vector of observations
b̂ Projection of b on span of A
r Rank of matrix
r Residual vector b − b̂
Ui Left singular matrix
ui Left singular vector of singular value decomposition
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CHAPTER 1
Introduction

This chapter provides the reader with an introduction to the sound zones problem
in general, and specifically to the research questions addressed in this thesis. The
first section of this chapter, the motivation, introduces the sound zones problem and
describes why this research was carried out. The second section, the scope of the
project, introduces the addressed research questions and describes what this project
contributes to current research. Section 1.3 presents the outline of this thesis, i.e.
how this thesis was structured to discuss the presented research questions.

1.1 Motivation
So far, whenever multiple individuals within the same acoustic space wish to enjoy
independent audio content, they have to rely on headphones to prevent interfering
audio from distracting each other. Headphones however, impede communication be-
tween listeners within that space. It is therefore desired to create a loudspeaker
system that delivers individual audio content to each listener, without distracting in-
terference [Col+14b]. This can be achieved by creating so-called sound zones within
the room. The idea is to create a bright and a dark zone for each individual audio
content. The bright zone thereby denotes a region within the space, where the audio
content is played back, while it is suppressed as much as possible in the dark zone.
Outside these two zones the sound field is not controlled. To create two zones, where
two individual audio contents are played back at the same time, one can superimpose
two sound zone solutions. For example, when two listeners sit in a region A and a
region B in a room, two sound zone solutions need to be created. One that generates
a dark zone in region A and a bright zone in region B, and one solution that creates
a dark zone in region B and a bright zone in region A.

Possible use case scenarios of the sound zones are for example: different people
watching the same movie in different languages at the same time, someone reading
a book in silence while someone else is watching TV, or different people listening to
different music at the same time.

One way to create sound zones is by using a composite solution, which uses active
sound field control in the low frequency range, array processing at mid frequencies
and the directivity of tweeters at high frequencies, as introduced by Druyvesteyn et
al. in [DG97]. This thesis focuses on the low frequency approach in the range from
20-300 Hz. In this range, where the wavelengths are long, sound zones can be achieved
through interference. To obtain silence in the dark zone, the sound from a number
of loudspeakers has to interfere destructively in the dark zone. In Pressure Matching
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(PM), the sound in the bright zone is desired to interfere in such a way that the
sound field equals that of a predefined target sound field [KN93]. Pressure Matching
is a sound zones method that aims at minimizing the mean square error between a
desired target sound field and the actually reproduced sound field. To achieve the
desired interference pattern in the room, and thereby the sound zones, the phase and
magnitude of the input signal have to be controlled for each loudspeaker. This can
be accomplished by applying pressure matching filters to the input signal.

In order to design pressure matching filters, the transfer functions from all sound
sources to the targeted position need to be known. These transfer functions contain
the information about how the system, i.e. the loudspeakers and the room, alter the
input signal phase and magnitude, before the signal can be perceived or recorded as
a sound pressure in the sound zones. The transfer functions from each loudspeaker
to any point in a real room are unique. A given input signal will therefore arrive with
a different phase and magnitude at a given position, depending on the location and
impulse response of the speaker emitting the signal. When all the individual transfer
functions are known, pressure matching filters can find the linear combination of these
transfer functions, that minimizes the squared error between the actually reproduced
sound field and the desired sound field.

Sound zones systems in rooms are usually realized as feed-forward systems based
on measured transfer functions [Møl+19]. This poses two challenges to the design
of PM filters. First, the transfer function measurements will always contain noise,
such that the transfer functions used for the filter calculation are only an estimate
of the real underlying transfer functions. Møller et al. [Møl+19] showed, that this
measurement noise can significantly degrade the performance of sound zones systems.
Secondly, the transfer functions are not static. Transfer functions can change after
they were determined, as a result to changes in the loudspeaker or in the environ-
ment. These transfer function errors can have a significant impact on the sound zones
performance. The sensitivity of the performance to transfer function changes was in-
vestigated in various setups. Olsen et al. [OM17] for example investigated the effect
of transfer function errors due to changes in the ambient temperature in cars. Chang
et al. [CJ12] investigated which effects scattering, e.g. by a human head, can have on
the performance of sound zones systems. The effect of phase and magnitude errors
in the loudspeakers, and the effect of small position mismatches is described by Park
et al. in [PCK13]. Further Ma et al. [Ma+18; Ma+19] investigated the impact of
loudspeaker distortion on the sound zones problem.

While these studies gave insights to how transfer function changes can impact
sound zones performance, it is difficult to draw conclusions on how severe the effects
are when sound zones are realized in domestic rooms. The mentioned study by Olsen
et al. [OM17] for example investigated the effects of a temperature change from -2 °C
to 22.8 °C. In domestic rooms the temperature variations can be assumed to be much
smaller. Further, the interior of a car has different properties than domestic rooms
in terms of size and damping. Ma et al. [Ma+19] showed that deviations between
estimated and real loudspeaker transfer functions can have a significant impact on
the sound zones performance, but since this paper focuses on the effects of distortion,
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it was not investigated how severe the impact of loudspeaker TF errors is across
frequency. The sensitivity to phase and magnitude errors in loudspeakers is described
analytically in Park et al. [PCK13], but since the setup and sound zones method are
different these results can not be directly compared to domestic rooms.

To increase the robustness of the sound zones problem to various sources of error,
regularization strategies were introduced. Zhu et al. [Zhu+17] provides a comparison
of different regularization strategies on their ability to make the system robust to
additive or multiplicative noise. The noise parameters are designed arbitrarily, i.e.
the noise is not based on a physical model. A physical error model however, could
provide further insights to the effectiveness of regularization, when the sound zones
are realized in domestic rooms.

1.2 Scope of the project
This thesis aims at providing realistic estimations of the challenges in the low fre-
quency sound zones problem in domestic rooms. In order to acquire these insights an
error model is proposed, that models transfer function errors. Two main error sources
are considered here: The change of room temperature altering the room transfer func-
tions, and loudspeaker transfer function changes as a result of the voice coil heating
up. These error models are then incorporated in a Monte-Carlo (MC) simulation to
investigate two research questions. The first research question asks:

”Which impact do transfer function errors have on the
performance of a low frequency sound zones system?”

This impact is evaluated by means of the acoustic contrast, an energy ratio between
the bright and the dark zone [CK02]. It is investigated how the acoustic contrast is
affected by the discrepancy between the transfer function estimates the PM filters are
based on, and the actual transfer functions they are evaluated on. This discrepancy
arises due to the actual transfer functions changing in each MC iteration, which is
simulated by the error model.

The second research question is concerned with regularization. It is of interest to
investigate how the sound zones system can be made more robust to transfer function
errors. The second research question asks:

”How can different regularization strategies improve the robustness of a
low frequency sound zones system to transfer function errors?”

The different regularization strategies aim at reducing the sensitivity to transfer func-
tion errors, by refining the PM filters. The different regularization strategies cov-
ered here are ridge regression (RR) [Zhu+17; Col+14b; The15], total least squares
(TLS) [HO96; The15; GL13], resampling [OM17], and probability model optimization
(PMO) [Zhu+17]. Again, the performance of the different regularization strategies
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is compared by means of the acoustic contrast in a MC simulation based on the
provided error model.

By investigating these two research questions this thesis makes another step to
analyzing the realisability of sound zones in domestic room settings.

1.3 Outline
Chapter 2 of this thesis introduces the theoretical background required to argue about
the simulation introduced in chapter 3. As stated before, this thesis introduces an
error model that allows an estimation on the impact of transfer function errors in the
sound zones problem. Therefore, the first part of the theory section is concerned with
providing the reader insights into the modelling of loudspeaker and room transfer
functions. Thereafter, the sound zones problem and common challenges to the sound
zones problem are introduced. In mathematical terms, pressure matching is a least
squares (LS) problem. Therefore some basic properties of least squares problems
are introduced in section 2.4, before the regularization strategies leveraged in the
following simulations are introduced in section 2.5.

Chapter 3 explains how the transfer function errors are modeled in the MC sim-
ulation. Further it introduces how the different regularization strategies are imple-
mented.

The results from the MC simulation are presented in chapter 4. First, the in-
fluence of transfer function errors on the ordinary PM filters is investigated, before
the performance of different regularized PM filters is shown. Table 4.1 provides a
summary of the acoustic contrast results of the different filters.

Chapter 5 discusses the results and limitations of the performed simulations and
addresses how the stated research questions were accounted for.

Finally this thesis is concluded in chapter 6, by a brief summary of the results,
some concluding remarks and an outlook to possible research that could be conducted
in the future.



CHAPTER 2
Theoretical Background

The following chapter presents the necessary background theory to understand current
challenges in the sound zones problem. The first section introduces the signal path,
i.e. how the electrical signal is transformed to a volume velocity based on a model
by Leach et al. [LL03] and how this volume velocity relates to the sound pressure at
a desired position in a room. This knowledge is then applied to the context of sound
zones in section 2.2, before some of the challenges in the sound zones problem are
introduced in section 2.3. In this thesis Pressure Matching is used to realize sound
zones in rooms. The PM solution is obtained by solving a least squares (LS) problem,
so the concept of LS is presented in section 2.4 followed by common regularization
strategies.

2.1 Signal Path
When the sound zones problem is implemented in situ, the transfer functions are
determined from measurements. Thereby it has to be considered that the room
transfer functions are only one part of the system that relates the input signal x to
the recorded sound pressure pm. In the first step of the signal path, the signal x is
filtered by a (Pressure Matching) filter wl. The output signal is scaled by an amplifier
to the output voltage Uout. A loudspeaker l then transforms the output voltage of the
amplifier Uout with the speaker transfer function hl,s to a volume velocity ql. This
volume velocity is then related to the sound pressure pm at a microphone m by the
room transfer function hml,r. The sound pressure is then transformed to an input
voltage by a microphone which is recorded by the sound card. Each of these steps has
a unique transfer function, however the transfer functions of the soundcard, amplifier
and microphones are assumed to be flat and robust. Consequently the focus of this
thesis lies on the transfer functions that relate the output voltage of the amplifier
to the volume velocity, i.e. the speaker transfer function hl,s, and the room transfer
function relating the volume velocity emitted by the speaker to the sound pressure
at the microphone hml,r. A block diagram summarizing the signal path is illustrated
in figure 2.1.

All transfer functions are assumed to be linear and time-invariant. This thesis
analyses the sound zones problem in the frequency domain, so the total transfer
function from the output signal x to the recorded sound pressure pm is a product of
the individual transfer functions [PM06]. Therefore the individual transfer functions
of the loudspeaker, room and filter can be analysed independently.
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Filter
wl

Loudspeaker
hl,s

Room
hml,r

x Uout ql pm

Figure 2.1: Signal Path in the sound zones system. An audio signal x is filtered
by the filter wl, the speaker transfer function hl,s and the room transfer function
hml,r, resulting in a sound pressure pm. The sound pressure pm is transduced by
microphones and recorded by a soundcard. The transfer functions of the amplifier,
the microphones and the soundcard are assumed to be flat and are therefore not
illustrated.

2.1.1 Loudspeaker transfer function
The transfer function of a loudspeaker relates the output voltage of an amplifier Uout

to the volume velocity ql generated by the movement vD of the diaphragm with surface
area SD. In the following, the low frequency transfer function hl,s of a closed-box
loudspeaker is derived.

The diaphragm of a speaker is attached to a coil in a magnetic field generated by
a permanent magnet. The movement of the diaphragm is a result of the force acting
on the coil when a current ic flows through it [LL03]. This current can be expressed
by [LL03]

ic = Uout − Ucoil

ZE
= Uout −BlvD

ZE
=
Uout −Bl ql

SD

ZE
. (2.1)

Ucoil denotes the induced voltage across the coil as a result of the movement of the
coil with velocity vD. In this simplified model, the electrical impedance ZE can be
approximated to the DC-Resistance of the coil RE [LL03] at low frequencies. Bl
denotes the force factor of the coil-magnet assembly which relates the mechanical
force on the coil to the current flowing through it. The resulting diaphragm velocity
vD can be related to the mechanical forces generated by the current flowing through
the coil and the pressure differences pD inside and outside the box in terms of the
mechanical impedance ZM of the system [LL03]

vD = Blic − SDpD

ZM
= Blic − S2

DvD(ZAF + ZAB)
ZM

. (2.2)

The pressure difference was substituted using the acoustical impedances at the front
of the box ZAF and inside the box ZAB . Inserting equation 2.1 into equation 2.2 and
solving for the volume velocity yields [LL03]

ql = vDSD = Bl

RESD
Uout

(ZM

S2
D

+ ZAF + ZAB + (Bl)2

S2
DRE

)−1
. (2.3)

The first part of this equation can be seen as the pressure on the diaphragm result-
ing from the voltage on the coil. The second, inverted term is a sum of acoustic
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impedances relating the pressure to the generated flow, i.e. the volume velocity, of
the system. This sum of acoustic impedances can be written as [LL03]

ZAT = MAT s+RAT + 1
CAT s

, (2.4)

where MAT is the total moving acoustic mass, RAT is the total acoustic resistance,
CAT is the total acoustic compliance and s the complex frequency. MAT is the sum of
the effective acoustic mass MAB of the air moving inside the box, the acoustic mass
of the moving coil and diaphragm MAS and the acoustic mass of the air oscillating
on the front of the diaphragm MAF . So MAT is the total acoustic mass moving when
a signal is passed to the speaker.

At low frequencies two approximations can be made. First, one can neglect the
acoustic resistance and compliance of the air elements outside the box, since their
impedances are much greater than the impedance of the air mass in parallel to them
[LL03]. Second, the impedance in series caused by the coil inductance is small and
can also be neglected at low frequencies [LL03]. This low frequency approximation
holds for frequencies that are less than one half of the upper piston frequency limit
[LL03].

The total acoustic resistance RAT is simply the sum of the resistance modelling
the mechanical losses in the diaphragm and coil suspension RAS , the mechanical
losses from the damping inside the box RAB and the electrical losses induced by the
coil movement in a magnetic field RAE .

The total acoustic compliance CAT is composed of the compliance of the suspen-
sion CAS and the air-load compliance in the box CAB .

The individual summands of the total acoustic impedance of the speaker can
therefore be expressed as [LL03]

MAT = MAB +MAS +MAF (2.5)
RAT = RAS +RAB +RAE (2.6)

CAT = CASCAB

CAS + CAB
(2.7)

Inserting the acoustic impedances into equation 2.3 and reformulating the equation
yields

ql = Bl

RESD
1

MAT s+RAT + 1
CAT s

Uout

= Bl

RESD

CAT s

MATCAT s2 +RATCAT s+ 1
Uout

= Bl

RESD

1
RAT

1
QT C

s
ωc

( s
ωc

)2 + 1
QT C

s
ωc

+ 1
Uout (2.8)

Where the total closed box quality factor QT C and the total closed box angular
resonance frequency wc were used to simplify the expression. They are defined as
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[LL03]

QT C = 1
RAT

√
MAT

CAT
(2.9)

and
ωc = 1√

MATCAT

. (2.10)

Finally the volume velocity in equation 2.8 can be rewritten as

ql = hl,sUout, (2.11)

where the speaker transfer function is defined as

hl,s = Bl

RESD

1
RAT

1
QT C

s
ωc

( s
ωc

)2 + 1
QT C

s
ωc

+ 1
. (2.12)

This low frequency transfer function can be used to relate the radiated volume velocity
ql to the output voltage Uout when the required parameters are known.

2.1.2 Room transfer function
The relation between the sound pressure pm at a microphone position rm and the
volume velocity ql emitted by a loudspeaker at a position rl can be expressed by a
room transfer function hml,r as

pm = hml,rql. (2.13)

Room transfer functions can either be determined in situ from room impulse response
measurements [Gui+15] or simulated. This report focuses on the simulation. To
determine the transfer function hml,r analytically one makes use of three fundamental
acoustic principles: mass is conserved, harmonic pressure differences are compensated
by changes in inertia and sound can be seen as an adiabatic phenomenon [JJ13]. These
principles can be used to formulate the inhomogeneous Helmholtz equation

∇2pm + k2pm = −jωρ0qlδ(rm − rl), (2.14)

where ω = 2πf is the angular frequency, k the wave number ω
c , c the speed of sound,

ρ0 the density of air and δ(rm−rl) is the Dirac delta function which is one for rm = rl

and zero otherwise. Reformulating the inhomogeneous Helmholtz equation by using
Green’s function Gml, such that pm = jωρ0qlG results in

∇2Gml + k2Gml = −δ(rm − rl). (2.15)

Green’s function is the general solution to the inhomogeneous Helmholtz equation
and can be understood as the room response of a surrounding space. Depending on
the boundary conditions of the space one can formulate specific Green’s functions, e.g.
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for free-field conditions, semi-infinite ducts or rooms [JJ13]. In rooms the boundary
conditions are defined by the damping properties of the walls. In a lightly dampened
room Green’s function can be expressed as a sum of multiple room modes ν with a
distinct mode shape ψν and natural wavenumber kν

Gml(f) = G(rm, rl, f) = −1
V

∞∑
ν=0

ψν(rm)ψν(rl)
k2 − k2

ν − jk/(τνc)
. (2.16)

The imaginary term −jk/(τνc) expresses the damping of the mode, where τν is the
time constant of the νth mode, which is proportional to the reverberation time at the
corresponding natural frequency. In the simplified example of a perfectly rectangular
room without damping the mode shapes ψν are simply a scaled product of cosines
in the x, y and z dimensions with maximums at the walls. Mode shapes and natural
frequencies of more complex rooms can be determined from elaborate models such
as the finite element method [Aba17], however in the sound zones problem they are
usually determined from measurements [Møl+19].

Towards higher frequencies the modal density, i.e. the number of eigenfrequencies
per bandwidth, increases and more modes are active at the same time. This results
in a more complex sound field where it can be advantageous to rely on a statistical
rather than the described analytical model [JJ13]. However, since the focus of this
thesis is on low frequencies in medium sized rooms only the analytical model is used
to simulate the sound field.

Using Green’s function one can express the room transfer function hml,r from
equation 2.13 as

hml,r = jωρ0Gml. (2.17)
and the resulting sound pressure as

pm = jωρ0qlGml. (2.18)

At 23° C in normal room conditions the speed of sound is c = 345 m
s . The frequency

range of interest in this report ranges from 20 Hz to 300 Hz, so the corresponding
wavelengths range from more than 17 m at 20 Hz to around 1.15 m at 300 Hz. A
source that is small compared to the wavelength can be approximated by a point
source [JJ13], so it is fair to simulate loudspeakers as point sources in this frequency
range. So the sound pressure at every location rm in a room can be simulated by
equation 2.18 when a loudspeaker emits the volume velocity ql at a location rl.

An example of a sound field excited by a point source in a room is illustrated
in figure 2.2. The speaker is positioned in the bottom left corner and the resulting
sound field is simulated at every position in the room using Green’s function. The
sound field is analysed on the floor of the room, so z = 0. At 30 Hz the wavelength
of the sound is nearly twice as long as the room dimension in the vertical y direction.
Therefore the sound field resembles a standing wave pattern with very low sound
pressure half way along the y axis and only very little changes across the x axis. At
higher frequencies one can notice that the shorter wavelengths and the greater modal
overlap cause the sound field to be more complex.
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Figure 2.2: Magnitude of sound field in dB SPL when room is excited by a loudspeaker
in the bottom left corner. The volume velocity of the source was set proportional to
1
ω such that the SPL at different frequencies is proportional to Green’s function. The
ticks on the x and y axis denote the room dimensions in meters

2.2 Interference and the sound zones problem

2.2.1 Interference
The previous section introduced how a single source can excite a sound field in a
room. A single source however has only two tunable parameters: the magnitude and
the phase of the signal controlling the volume velocity ql. Since the resulting sound
pressure in equation 2.13 is a product of the volume velocity ql and the response of
the space hml,r it becomes evident that one can not alter the spatial properties of a
sound field, but can only change the phase and magnitude uniformly across the room.
To create sound zones a certain degree of control is required that can be achieved
from leveraging interference from a higher number of loudspeakers.

Interference is a fundamental phenomenon in acoustics that occurs when two or
more sound waves encounter. Due to the principal of superposition interfering waves
will add up linearly [Ros07]. Since the sound pressure is a complex quantity multiple
sound waves can interfere destructively or constructively depending on the phase of
the individual summands. If two waves are out of phase by more than ±90◦ they
will interfere destructively, when the phase angle is less than ±90◦ they will interfere
constructively. Constructive intereference implies that the summed sound pressure
amplitude is greater than that of the greatest summand, destructive interference
results in a sound pressure smaller than the greatest summand. Waves of equal am-
plitude can obtain complete destructive interference when 180° out of phase, i.e. the
sound pressure will be canceled out completely, or complete constructive interference
when perfectly in phase, i.e. the resulting amplitude is doubled [Ros07].

2.2.2 The sound zones problem
Now imagine the sound field generated by L loudspeakers being sampled by M mi-
crophones in a predefined dark and bright zone ( M

2 per zone). The sound pressure at
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each microphone m is then the sum of the individual contributions from each speaker
l, i.e.

pm =
L∑

l=1

hml,rql =
L∑

l=1

hml,rhl,swlx. (2.19)

where wl is the filter applied to the input signal x. Note that all variables pm, hml, wl,
hl,s x and ql are frequency dependent, but for the sake of readability the frequency
dependent notation was omitted. In the time domain the product in equation 2.19
would be a convolution.

The signal x can be seen as an independent scaling factor. A sound zones system
is designed to work for any input signal. So the signal x is neglected in the following.
Equation 2.19 can then be expressed for all M microphones in matrix notation to

p = Hr(hs ⊙ w) (2.20)

where ⊙ denotes element-wise multiplication and

p =


p1
p2
...
pM

 , Hr =


h11,r h12,r · · · h1L,r

h21,r h22,r · · · h2L,r

...
... . . . ...

hM1,r hM2,r · · · hML,r

 , hs =


h1,s

h2,s

...
hL,s

 , w =


w1
w2
...
wL

 .
By multiplying the speaker transfer function hs with the columns of the room transfer
function matrix Hr one can simplify equation 2.20 to

p = Hw, (2.21)

where H is the transfer function matrix given by

H = Hr ⊙ (Ihs) =


h11,rh1,s h12,rh2,s · · · h1L,rhL,s

h21,rh1,s h22,rh2,s · · · h2L,rhL,s

...
... . . . ...

hM1,rh1,s hM2,rh2,s · · · hML,rhL,s

 . (2.22)

Here, I is the identity matrix of shape M×1. The transfer function matrix H consists
of the full transfer functions from the input voltage at each of the L loudspeakers to
the sound pressure at each of the M microphones.

Goal of the sound zones problem is to design a set of filters w that modify the
phase and magnitude of the volume velocities of multiple sound sources such that
the resulting pressure field will interfere destructively in a predefined dark zone and
constructively in a bright zone.

To attain the filters wl for each loudspeaker certain cost functions such as the
acoustic contrast (AC) or the reproduction error can be optimized. The correspond-
ing optimization methods are acoustic contrast control (ACC) [CK02] and pressure
matching (PM) [KN93] respectively.
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2.2.3 Acoustic Contrast Control
In ACC the acoustic contrast, i.e. the power ratio between the bright and the dark
zone, is maximized. Defining the bright zone as the sound pressure pmB

sampled by
MB microphones and the dark zone as the sound pressure pmD

at MD microphones
one can formulate the acoustic contrast between the zones as [Møl+19]

contrast =
MB

−1 ∑MB

mB
||pmB

||22
MD

−1 ∑MD

mD
||pmD

||22
, (2.23)

where || · ||2 denotes the l2-norm. The optimal acoustic contrast filters maximize the
contrast, so they can be obtained from maximizing the cost function [Møl+19]

Jacc(w) = MB
−1||HBw||22

MD
−1||HDw||22

. (2.24)

This can be seen as an eigenvalue problem with the solution [Møl+19]

wacc = θ
((

HD
HHD

)−1
HB

HHB

)
, (2.25)

where the operator θ(·) denotes a function returning the eigenvector corresponding
to the largest eigenvalue of its input and (·)H denotes the Hermitian transpose of a
matrix.

2.2.4 Pressure Matching
In pressure matching the filters are designed such that the resulting sound pressure
minimizes the reproduction error, i.e. the mean squared error to a predefined target
sound field pt [KN93]. The target sound field is designed such that the pressure in
the bright zone resembles a desired sound field (e.g. a plane wave) and zero pressure
in the dark zone. The optimal pressure matching filters can be found by minimizing
the cost function [KN93]

Jpm(w) = ||pt − Hw||22. (2.26)

This minimization is a Least Squares problem, which is discussed in further detail in
section 2.4 and to which a solution can be found by [GL13; The15; KN93]

wP M = (HHH)−1HHpt. (2.27)

An example of a sound field generated by PM is illustrated in figure 2.3. One can
notice how the pressure matching filters manipulated phase and magnitude such that
the resulting superimposed sound field from the eight loudspeakers is very low in the
dark zone relative to the SPL in the bright zone.

Though PM generally does not achieve the same contrast as ACC [Col+14a] it
provides more control about the sound field in the bright zone. In ACC the wavefronts
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in the bright zone come from erratic directions [Jac+11], which was found to reduce
sound quality in perceptual studies [Bay+15] compared to plane waves. This problem
can be overcome by using Planarity Control [Col+14a], which imposes an additional
constraint on the ACC solution such that the sound field in the bright zone resembles
a plane wave.

To improve the acoustic contrast from PM the transfer function matrix H can be
weighted such that the reduction of sound energy in the dark zone gains significance
compared to the mean squared error in the bright zone [CJ13]. The PM solution
will approach the ACC solution when the dark zone transfer functions are weighted
heavily [CJ13], so ACC can be seen as a weighted version of PM. Therefore this thesis
focuses on PM in the following, which allows for more control on the sound field.

2.3 Challenges in the sound zones problem
In situ the sound zones problem is usually designed as a feed forward system. While
simulations such as in figure 2.3 are based on the exact underlying transfer functions
these are not available when designing a sound zones system in e.g. a domestic room.
The transfer functions have to be determined from measurements that will contain
noise, therefore the transfer function matrix used to calculate the filters is only an
estimate of the real underlying transfer functions [Møl+19].

Another problem arises from the fact that transfer functions depend on under-
lying physical properties of the room that can change over time. The room itself
can change, e.g. when a window is opened, persons move around in the room or
furniture is changed. However this thesis assumes the room to be static and since
the wavelengths in the observed frequency range are long compared to e.g. a human
head the effect of scattering is assumed to be small [CJ12]. This thesis focuses on

Figure 2.3: Sound field generated by eight loudspeakers standing on the floor of
a 5.65 m× 8.61 m× 2.7 m room, when the filters are calculated using PM. The
loudspeaker positions are indicated by small squares. The bright and dark zone are
both 50 cm× 50 cm× 30 cm and are indicated with B and D respectively. The sound
field is visualized at a height of 4.14 m, in the middle of the sound zones. The color
bar indicates the SPL in dB.
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changes in the room transfer functions hml,r due to temperature changes and changes
in the speaker transfer functions hl,s. In an earlier work [Ben20] it was shown that
changes in temperature and speaker transfer function can have a significant impact
on the performance of the system, since the sound zones solution is based on a specific
transfer function matrix that does not represent the real transfer function matrix.

2.3.1 Changes in Speaker Transfer Functions
Both, non-linear distortion products as well as changes in the transfer functions can
decrease the performance of sound zone systems. Ma et al. [Ma+18; Ma+19] investi-
gated the impact of loudspeaker distortion on the sound zones problem. It was shown
that effects of non-linear distortion can sometimes be audible in the dark zone, but
the effect is small compared to the effects caused by deviations between measured
and real transfer functions [Ma+18]. The impact of the distortion can further be
reduced by using high quality loudspeakers and reducing the control effort [Ma+19],
i.e. the signal power relative to a reference [CK02]. This thesis therefore focuses on
the effect of changes in the linear frequency response of the speakers.

One cause of changes in the frequency response results from the voice coil getting
hot because the loudspeaker is used for a long time at high levels. The DC-Resistance
RE of a wire made from copper changes with temperature as [Kas05]

R̃E = RE(1 + α(T − T0)), (2.28)

where α = 4.04 · 10−3 K−1 is the temperature coefficient of copper, T0 = 23 ◦C is the
reference temperature and R̃E is the DC resistance at the temperature T . Another
effect of the coil heating up arises when the heat dissipates to the suspension of the coil,
i.e. the spider, which gets softer with rising temperatures [PA07]. The compliance of
the diaphragm further increases (gets softer) as it heats up due to mechanical losses
[PA07] and due to the mechanical stretching and squeezing of the oscillation [SK01].
The effect of the temperature on the force factor Bl is assumed to be small [Age07].
The moving mass MAT and the box compliance CAB and losses RAB are not changing.
While it is possible that the losses in the suspension RAS can change, the effect is
assumed to be small since these losses are much smaller than the electrical losses RAE

and the losses in the box RAB .
Consequently this report focuses on the changes in the DC-Resistance of the coil

RE and the change in suspension compliance CAS . From equations 2.8 - 2.10 it can be
seen that an increase in DC-Resistance will increase damping, the Q-Factor QT C will
decrease, and the overall emitted volume velocity will be smaller. A higher suspension
compliance CAS will decrease the resonance frequency and the Q-Factor.

2.3.2 Changes in room temperature
The speed of sound is proportional to the square root of the absolute temperature of
the medium [JJ13]. At 20 °C the speed of sound can be calculated to c20◦ = 343 m

s
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and to c26◦ = 347 m
s at 26 °C. The wavenumber k is inversely proportional to the

speed of sound. Since the time constant τν is inversely proportional to c2 [JJ13] in
this simplified model, the damping term −jk/(τνc) is independent of the speed of
sound. A change in speed of sound will therefore result in Green’s function from
equation 2.15 to be stretched or squeezed along the frequency axis for a decrease or
increase in temperature respectively.

This effect is further illustrated in the example of a rectangular room in section
3.3, where one of the transfer functions used for the following simulations is shown.

2.4 The Least Squares problem
Pressure Matching is a Least Squares problem. The following section defines the Least
Squares problem and shows how the solution can be derived and further introduces
a measure of sensitivity of the solution.

2.4.1 Formulating the Least Squares problem
Given a data matrix A ∈ CM×L and a vector of observations b ∈ CM , the least
squares problem aims at solving the linear system

Ax = b (2.29)

with the smallest possible error by finding the vector xLS ∈ RL that minimizes
||Ax − b||2 with respect to x, where || · ||2 denotes the l2-norm. So the LS problem
can be expressed as

xLS = argmin
x

{
||Ax − b||2

}
. (2.30)

If M > L then the system is overdetermined, i.e. there are more equations than
unknowns. If A is of full rank, then there exists a unique xLS minimizing equation
2.30. A matrix is said to be of full rank when its rank r is equal to the largest possible
for a matrix of the same dimensions, which is the lesser of the number of rows and
columns M and L. For overdetermined systems the rank of A is full when r = L.

If b is in the span of A, then b can be expressed by a linear combination of the
column vectors of A, so there exists a vector x, such that ||Ax − b||2 = 0. However,
for overdetermined systems b is usually not in the span of A, so ||Ax − b||2 > 0,∀x.

The product AxLS that comes closest to b in the l2-norm is the projection of b
on the column space of A, so the difference vector r = b − AxLS will be orthogonal
to the column space of A. The column space of A equals the row space of AH , so
multiplying AH with the difference vector r yields

AH(b − AxLS) = 0 (2.31)
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due to the orthogonality. Reformulating leads to the ordinary least squares solution
(OLS) which can be expressed as

xLS =
(
AHA

)−1
AHb. (2.32)

This equation (2.32) allows us to find the optimal linear combination xLS to come
as close as possible to b in the span of A. The projection b̂ of b on the span of A is
illustrated in figure 2.4a.

If the rank of A is less than L, then there is an infinite number of solutions to the
LS problem, as the columns of A are not linearly independent, such that there are
infinitely many ways to represent the projection of b in the span of A. This makes
the calculation of equation 2.32 impossible, as the inverse of a rank deficient matrix
does not exist and rank(AHA) ≤ rank(A).

The ordinary least squares solution can also be expressed using the singular value
decomposition A = UΣV . The left singular vectors ui, i.e. the columns of U , form
an orthonormal basis spanning the same space as the span of A. So projecting b on
the span of A will result in the same projection b̂ as when projecting b on the vectors
ui. This projection can be expressed as

b̂ =
r∑

i=1
(ui

T b)ui. (2.33)

(a) Projection b̂ of vector b on the surface
spanned by the column vectors a1 and a2 of
the matrix A. The residual r is orthogonal to
every vector in the spanned space. The pro-
jection b̂ equals the product of A = [a1, a2]
and xLS = [xLS(1), xLS(2)]T

(b) Sensitivity of the OLS solution when
the basis vectors a1 and a2 are collinear.
Small perturbations in the projection b̂1
can cause drastic changes in the solution
xLS,1. ||xLS,2||2 is significantly greater than
||xLS,1||2 even though the projection b̂2 is
close to b̂1. u1 and u2 are the left singular
vectors of A

Figure 2.4: Sketches to illustrate LS
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This projection can then be used to find an alternative but equal formulation to
equation 2.34. With vi representing the right singular vectors, i.e. the columns of V ,
and the singular values σi the OLS can be formulated to

xLS =
r∑

i=1

ui
T bvi

σi
. (2.34)

Formulating the least squares solution in terms of the singular value decomposition
can be advantageous when analysing the system on the sensitivity to perturbations.

2.4.2 Sensitivity of the LS solution
The least squares solution from equation 2.32 is very sensitive to small perturbations
if either b is nearly orthogonal to the span of A or if the system is ill-conditioned.

If b is nearly orthogonal to the span of A, then the projection of b onto the span
of A will be much smaller than the vector b itself. It follows that relatively small
changes in b can result in big changes in the LS solution xLS . However, b being
almost orthogonal to the span of A also implies a very poor LS solution in general,
making this scenario less relevant for further investigation.

A linear system is said to be ill-conditioned when small changes in either the
matrix A or in the vector b result in great changes in the least squares solution.
From a geometrical point of view this is the case if the vectors in the span of A
are nearly linear dependent as illustrated in figure 2.4b. A metric that evaluates the
sensitivity of the least-squares problem is the condition number. In the l2-norm the
condition number of a matrix A is defined as [GL13]

κ(A) = σmax

σmin
, (2.35)

where σmax and σmin are the maximum and minimum singular values of A. When
solving the LS problem using equation 2.32, the condition number of AHA is critical
and can be calculated by [GL13]

κ(AHA) = ||AHA||2||(AHA)−1||2 = κ(A)2. (2.36)

A matrix with linear dependent columns is not invertible, the lowest singular value will
be zero, so the condition number is infinite. The condition number for matrices with
highly correlated columns will be high. An orthonormal matrix will have a condition
number of 1, since all singular values are 1. The condition number can therefore also
be seen as a metric evaluating the orthonormality of the matrix columns.

From an analysis of the SVD decomposition of the OLS, equation 2.34, it can be
observed that the solution xLS is most sensitive when perturbations in b occur in
the directions ui corresponding to low singular values σi. The OLS will therefore
be very robust if the data matrix is orthonormal and all singular values are one and
can become very sensitive if the low singular values are small. This also explains the



18 2 Theoretical Background

high sensitivity to the small perturbation in figure 2.4b. Both vectors a1 and a2 are
pointing in a similar direction. Therefore the singular value σ1 corresponding to the
first singular vector u1 will be much bigger than the second singular value σ2. The
perturbation b̂1 − b̂2 happens in the direction of the second singular vector. If the
perturbation had been along the first singular value the solution would only have
changed little.

The projections b̂1 and b̂2 in figure 2.4b are close to the axis u1. Whenever the
projections are further away from this axis the l2-norm of xLS can easily become very
large. For large solutions xLS the system becomes sensitive to small changes in A,
explaining why collinearity is not just causing sensitivity to perturbations in b̂ but
also in A.

2.5 Regularization
All measured data contains noise and whenever there is noise in the system it is
usually preferred to find a robust, rather than the optimal solution for the measured
system. To find a more robust solution one can make use of regularization.

2.5.1 Ridge regression
A common method of finding a more general LS solution to linear systems is ridge
regression. Ridge regression applies a special kind of Tikhonov regularization, where
the regularization matrix is chosen to be a multiple of the identity matrix I. Ridge
regression can be formulated by the minimization problem

xRR = argmin
x

{
||Ax − b||22 + λ||x||22

}
, (2.37)

where λ is a design parameter that controls the scale of the regularization with the
constraint λ ≥ 0. When λ = 0 the problem reduces to the ordinary least squares prob-
lem without regularization from equation 2.30. Great values of λ will enforce great
regularization to the problem, the solution will fit the given system less accurately
but will also avoid overfitting. The minimization problem is solved by

xRR = (AHA + λI)−1AHb. (2.38)

Ridge regression applies a weight to the l2-norm of x. Thereby it prevents the solution
from growing too big, making the solution less sensitive to noise. It can also be
understood as a diagonal weight to the Gram matrix AHA. The Gram matrix is
a symmetric matrix containing the dot products of the different column vectors of
the matrix A. For an orthogonal A the product AHA will be diagonal. The closer
the span of A is to linear dependence, the greater the corresponding non-diagonal
elements in AHA will be. Adding a diagonal loading λI to the matrix product will
diagonalize the matrix, making it closer to orthogonality and thereby reduces the
condition number and increases numeric stability.
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A similar, interesting interpretation of ridge regression can be obtained by lever-
aging the singular value decomposition. By applying the SVD to the ridge regression
solution 2.38 it can be shown [The15] that the regularized projection of b onto the
span of X, i.e. b̂, can be expressed as

b̂ =
r∑

i=1

σi
2

λ+ σi
2 (uT

i b)ui. (2.39)

So the ridge regression solution is

xRR =
r∑

i=1

σi

λ+ σi
2 (ui

T b)vi. (2.40)

It is interesting to note that ridge regression assigns higher weights to more informa-
tive directions where most of the data variance takes place and regularizes directions
corresponding to low singular values. Since the ordinary least squares solution is sen-
sitive to noise in the directions corresponding to low singular values, ridge regression
can be very effective if the sensitivity of the problem is explained by linear depen-
dence of the column vectors. If the column vectors have low collinearity the singular
values will all be close to one, making the system less sensitive to perturbations and
ridge regression less effective.

2.5.2 Total Least Squares
The ordinary least squares solution from equation 2.32 finds the hyperplane that
minimizes the sum of squared residuals in the observations. This implies that the
regressor A is exact. However, since the regressor A is often based on noisy measure-
ments it can be advantageous to find a solution that allows for errors in both, the
regressor and the observations. The total least squares solution finds the hyperplane
that minimizes the total square distance to all samples [am, bm] from it by

xT LS = argmin
x

{
||Â − A, b̂ − b||2F

}
= argmin

x

{ M∑
m=1

(b̂m − bm)2 + ||âm − am||2F
}

= argmin
x

{ M∑
m=1

(âmx − bm)2 + ||âm − am||2F
}
, (2.41)

such that all [âm, b̂m] lie on that hyperplane. The difference between OLS and TLS
is illustrated in figure 2.5.

To arrive at the TLS solution one can consider the column space of Â and b̂.
Since b̂ is a linear combination of the columns of Â it can be inferred that the rank
of the concatenated matrix [Â, b̂] equals the rank r of the matrix Â. If Â is a tall
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(a) Ordinary least squares finds the hyper-
plane minimizing the sum of squares of the
errors in the observations

∑M

m=1(b̂m − bm)2

(b) Total least squares minimizes
the total square distance of all sam-
ples to the hyperplane by minimizing∑M

m=1(b̂m − bm)2 + ||âm − am||2F

Figure 2.5: Ordinary least squares and total least squares will find different solutions
given the same input samples [am, bm]. The dashed lines represent the respective
error of which the sum of squares is minimized.

matrix of full rank then the rank will equal the number of columns L, so r = L. The
concatenated matrix [A, b] is of rank r = L+ 1 since b is usually not in the column
space of A. Now, to solve equation 2.41 one essentially wants to find the best rank
L approximation [Â, b̂] to the rank L + 1 matrix [A, b]. Following Eckart-Young-
Mirsky’s theorem the best low rank approximation in the Frobenius norm can be
achieved by a truncated singular value decomposition [The15]. So the best rank L
approximation of [A, b] in the Frobenius norm is given by

[Â, b̂] =
L∑

i=1
σ̄iūiv̄i

T . (2.42)

Where [A, b] =
∑L+1

i σ̄iūiv̄
T
i is the SVD of the concatenated sample matrix.

Using the SVD of the regressor A =
∑L

i σiuivi one can compute the approxima-
tions b̂ by

b̂ =
L∑

i=1

σi
2

σi
2 − σ̄2

L+1
(ui

T b)ui (2.43)

and the TLS solution xT LS to

xT LS =
L∑

i=1

σi

σi
2 − σ̄2

L+1
(uT

i b)vi

= (AHA − σ̄2
L+1I)−1AHb. (2.44)
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The fact that the approximated concatenated sample matrix can be expressed
by the SVD of the regressor has the implications that the hyperplane minimiz-
ing the total distance from all points is defined by vL+1 and that the squared
error that is minimized in equation 2.41 is of the size of the last singular value
||Â − A, b̂ − b||2F = σ̄L+1 [The15]. It is therefore possible to approximate [A, b]
with little error, however this does not imply that the error in the predictions will
be small since TLS leverages an optimal approximation of A to minimize the error
||Â − A, b̂ − b||2F . This optimal approximation will usually deviate from the real
underlying sample matrix.

Comparing the TLS solution 2.44 to the ridge regression solution 2.38 one can
notice the deregularizing property of the TLS. The TLS is in fact promoting a larger
unstable solution [The15]. TLS will impose a higher condition number to the matrix
that is to be inverted than the OLS or RR solution. So when both the regressor and
the observations contain noise TLS can be superior to OLS and RR, but only when
the noise is small [The15].

2.5.2.1 Regularized Total Least Squares

To compensate the high noise sensitivity of the TLS regularization can be added to
the problem. The regularized solution can then be written as [HO96]

xRT LS = (AHA − σ̄2
L+1I + λI)−1AHb. (2.45)

Comparing this equation to the OLS solution 2.32 and the RR solution 2.38 it can
be observed that setting λ = σ̄2

L+1 will result in the OLS and setting λ > σ̄2
L+1 will

result in the RR solution. If λ < 0 the RTLS solution will be even more sensitive to
errors [HO96]. So the most interesting range of λ is between 0 and σ̄2

L+1.

2.5.3 Specific adaptation in the sound zones problem
Both TLS and RR assume the presence of additive noise in the observations or the
regressor. The goal of these regularization techniques is to make the system robust to
this additive noise. However, in many situations the perturbations in the system occur
due to a known change in the physical environment and it can be advantageous to
leverage this knowledge to adapt the system, rather than simply making the system
robust to additive noise. In practice the underlying physical environment and the
corresponding changes are often not perfectly understood or it is not possible to
monitor the changes exactly, so the gain of specific adaptation is limited.

2.5.3.1 Resampling Temperature

In the sound zones problem the observation matrix is the matrix of transfer functions.
The scenario in which we assume the deviations in the transfer function matrix to
be caused by a change in temperature and the resulting speed of sound difference
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is special, as the real transfer functions can be determined when assuming the tem-
perature in the room to be uniform. It was argued in section 2.3.2 that a change in
temperature causes the transfer functions to stretch or squeeze along the frequency
axis when the temperature is decreased or increased respectively. So assuming the
boundary conditions in the room to be independent of temperature and the temper-
ature change in the room to be uniform enables us to update our transfer function
estimates from the initial estimates by resampling. Since the change in the transfer
functions is proportional to the change in speed of sound, which in turn is propor-
tional to the square root of the relative change between the new temperature Tnew

and the initial temperature Tinit, the updated transfer functions are given by

hml,new

(
f

)
= hml

(√
Tnew

Tinit
f

)
(2.46)

and the updated filters can be expressed in the same fashion as

wl,new

(
f

)
= wl

(√
Tnew

Tinit
f

)
. (2.47)

2.5.3.2 Probability model optimization (PMO)

Whenever the errors in the transfer function matrix underlie a known distribution
one can leverage this knowledge and incorporate it in the cost functions [Møl+19].
The idea of PMO in pressure matching is to minimize the expected reproduction
error, rather than minimizing the reproduction error for an initial transfer function
matrix H0 [Zhu+17]. Zhu et al. [Zhu+17] formulate PMO filters for additive and
multiplicative errors with normal or uniform distributions. In this thesis however,
the PMO filters are designed to minimize the expected reproduction error for any
error model independent of the error type. The filters that minimize the expected
reproduction error can be found by

wP MO =
(
E(H̃HH̃)

)−1E(H̃)pt, (2.48)

where H̃ is the stochastic transfer function matrix with known means and error
distributions and the operator E(·) denotes the expected value.



CHAPTER 3
Simulation Method

This chapter introduces the procedure and the set of parameters in the simulations
used to estimate the performance of a sound zones system. First the loudspeaker
model is introduced that estimates reasonable transfer functions and deviations of
their initial state.

3.1 General Setup
The sound zones problem is modeled in a perfectly rectangular room which is 5.65 m
long, 8.61 m wide and 2.7 m high. The room has a reverberation time of 0.6 seconds
in the whole frequency range from 20-300 Hz. Eight speakers are placed on the floor
of the room. Four in the four corners, two half way along the width of the room by
the walls and two half a meter behind the sound zones in the middle of the room as
illustrated in figure 2.3. The dark and the bright zone are both 50 × 50 × 30 cm and
sampled by 75 microphones in each zone with 10 cm spacing between each. Therefore
the transfer function matrix H has M = 150 rows and L = 8 columns. Each element
hml is the product of the speaker transfer function hl,s and the room transfer function
hml,r as in equation 2.22.

To obtain the pressure matching solution a target sound field pt has to be defined.
Here the target sound field was set to equal the transfer functions from the closest
speaker in the bright zone and zero in the dark zone. This ensures that the target
sound field is not subject to phase issues which have shown to decrease the sound
quality significantly [Bay+15]. The goal is therefore to create a sound field in the
bright zone which is perceived as if only one loudspeaker was used and all the other
loudspeakers are used to cancel the sound pressure in the dark zone. Using superpo-
sition this procedure could be performed for all eight speakers to enable a surround
sound experience.

The following simulations incorporate random parameters, namely the room tem-
perature and the voice-coil temperature. To model the influence of these parameters
a Monte-Carlo simulation was performed. Each of the following simulations was per-
formed with 200 Monte-Carlo iterations. A convergence study was performed for each
simulation to verify that the simulation had converged well before the 200 iterations.

All calculations were executed in MATLAB R2019b. The corresponding code can
be found on GitLab1.

1https://gitlab.gbar.dtu.dk/s190247/thesis

https://gitlab.gbar.dtu.dk/s190247/thesis
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3.2 Modelling the speaker transfer function
The model used to design the transfer functions of the speakers is based on the closed-
box model by Leach et al. [LL03]. The model and the corresponding MATLAB
implementation are based on equation 2.8 from section 2.1.1. A list of parameters
is necessary to design a realistic model. As described in section 2.3.1 some of the
speaker parameters can change when the speakers are used for a long time as the
coil and the suspension heat up and thereby change the DC-Resistance of the voice
coil RE and the suspension compliance CAS of the suspension. In the following the
cold, initial state of the loudspeaker model is introduced before an estimation is made
about expected changes in the transfer functions when the speaker heats up.

3.2.1 Initial parameters
The driver parameters, i.e. the DC-Resistance RE of the coil, the force factor Bl,
the piston area of the diaphragm SD, the total moving mass of the coil diaphragm
assembly MMD, the suspension compliance of the diaphragm CMS and the mechan-
ical Q-Factor QMS were taken from the specification sheet of the SLS-P830668 by
Tymphany HK Limited [Lim17]. The mechanical impedances from the total moving
mass of the coil diaphragm assembly MMD and the suspension compliance CMS were
transformed to acoustic impedances by [LL03]

MAD = MMD

SD
2 (3.1)

CAS = CMSSD
2. (3.2)

Further the acoustic resistance of the diaphragm modelling the losses in the suspension
RAS was not specified in the specifications of the driver and had to be derived from
the mechanical Q-Factor [LL03]

RAS = 1

QMS

√
MAD

CAS

. (3.3)

The box was designed to have a volume VB of 20 l. The effective acoustic volume
VAB of the box is usually slightly bigger to account for filling in the box [LL03]. Here
the volume of the box is scaled by 1.15 to yield the effective acoustic volume VAB .
The effective acoustic volume of the box can then be used to determine the acoustic
air-load compliance on the rear of the diaphragm to [LL03]

CAB = VAB

ρ0c2 . (3.4)

Using a mass loading factor B and the effective density of the air and the filling in the
box ρ, the acoustic moving mass MAB inside the box can be determined by [LL03]

MAB = Bρ√
SDπ

. (3.5)
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The chosen values for ρ and B are based on examples provided by Leach [LL03].
The values used for the initial state transfer function are shown in table 3.1 and

3.2. Using these values the initial state total Q-Factor and closed-box resonance
frequency fc = ωc/(2π) were determined to QT C,i = 1.19 and fc,i = 57 Hz.

Effective piston area SD 346.4 cm2

Force factor Bl 10.42 Tm
Moving Mass MMD 56.3 g
Mechanical Q-Factor QMS 7.15
Susp. compliance CMS 429 µm/N
DC-Resistance Coil RE 5.61 Ω

Table 3.1: Driver parameters [Lim17]

Box volume VB 20 l
Eff. box volume VAB 1.15 · 20 l
Eff. density ρ 7.18 kg/m3

Mass loading factor B 0.65

Table 3.2: Box parameters [LL03]

3.2.2 Deviations from the initial parameters
As explained in section 2.3.1 the greatest effect on the transfer function is expected
from changes in the DC-Resistance RE and the coil-diaphragm suspension CAS . Both
changes occur primarily when the speaker is driven at high levels, so it is reasonable to
assume them to be correlated. Chapman introduced a model [Cha98] to simulate the
voice coil temperature. This work includes measurements of the voice coil temperature
while playing ”The Dark Side of the Moon” by Pink Floyd, a 43 minute album with
great loudness variation. A Gamma distribution that approximates the measured
voice coil temperature distribution was employed in the Monte-Carlo simulation. The
corresponding temperature histogram is shown in figure 3.1a. The resulting change in
resistance was then modeled according to equation 2.28. Each speaker was modeled
independently, i.e. no correlation between the voice coil temperatures of different
speakers were assumed in this simulation.

Research by Pedersen et al. [PA07] showed that the compliance CAS can increase
up to 25% when a speaker is running for 10 minutes. This was incorporated in the
model assuming that the compliance increases by 25% for a voice coil temperature
rise of 30 °C.

The resulting mean and standard deviation of the transfer functions used in the
Monte-Carlo simulation are illustrated in figure 3.1b and 3.1c. All transfer functions
were normalized such that the mean of the initial transfer function is 0 dB. The
deviation is the smallest just below the closed-box resonance frequency at 57 Hz and
increases both towards higher and lower frequencies. The greatest standard deviation
is 0.14 dB at 300 Hz. Figure 3.1d shows the standard deviation of the phase in the
MC simulation. The biggest phase errors occur just above the resonance frequency
but never exceed 1.5°.
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(a) Histogram of simulated voice coil temper-
atures

(b) Mean and standard deviation of normal-
ized speaker transfer functions

(c) Standard deviation of speaker transfer
function magnitude

(d) Standard deviation of speaker transfer
function phase

Figure 3.1: Statistical properties of the loudspeaker transfer function

3.3 Modelling the room transfer function
Following sections 2.1.2 and 2.3.2 the room transfer functions were modeled by equa-
tion 2.17. According to ISO 7730:2006 [Sta15] moderate room temperatures are
20-24 °C in winter and 23-26 °C in summer. The speed of sound therefore varies from
c20◦ = 343 m

s to c26◦ = 347 m
s . It was assumed that all the temperatures are equally

likely, so the modeled temperature follows a uniform distribution between 20 °C and
26 °C. The histogram of the temperatures used in the MC simulation are shown in
figure 3.2a. Further it was assumed that the temperature varies uniformly across the
room, i.e. there is no temperature gradient to the walls. The initial transfer function
simulation was performed at 23 °C.

The mean transfer function from one speaker to one microphone at 200 differ-
ent temperatures is shown in figure 3.2b with its standard deviation. A change in
temperature stretches or squeezes the transfer function across the frequency axis as
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described in equation 2.46. The changes in the transfer function are more drastic
at higher frequencies, as the modal density increases. Figure 3.2c illustrates this by
showing the mean of all M × L standard deviations across the 200 MC iterations. A
clear trend can be observed showing the greater deviations at higher frequencies. The
same holds for the phase errors, which clearly increase with frequency.

3.4 Regularization strategies
The influence of different regularization strategies is evaluated by means of the achieved
acoustic contrast. The initial set of filters w0 is calculated based on the initial transfer
function matrix H0 using equation 2.27. The achieved acoustic contrast from the ini-
tial transfer function and the matching filters is used as reference, since it corresponds
to the optimal pressure matching solution. The effect that errors in the speaker and
room transfer functions have on the acoustic contrast is analyzed in three different
conditions: The transfer functions HS contain errors in the speaker transfer functions,
the transfer functions HR contain errors in the room transfer functions and HSR is
the combination of both. The errors were modeled as described in section 3.2.2 and
3.3. The achieved acoustic contrast is averaged across the 200 MC iterations and the
corresponding standard deviation is calculated.

3.4.1 Ridge regression
The effect of ridge regression on the robustness is evaluated on speaker and room
transfer function errors. The filters are calculated for a set of regularization parame-
ters λ from λ = 10−5 to λ = 102. In this simulation the performance was evaluated
for each λ and the frequency dependent λopt which showed the optimal performance
was used for the MC simulation. This is an approach that is not feasible for feed-
forward systems, so it could not be used in situ. Zhu et al. [Zhu+17] introduced
regularization parameters based on the singular values, but at free field conditions.
The reflections from the wall make the system far more complex, so finding a good
regularization parameter can be a great challenge in practice [Zhu+17]. This report
only shows the maximal robustness that can be gained from ridge regression by using
the optimal regularization parameter.

3.4.2 Total least squares
The TLS filters were determined from equation 2.44. Furthermore it was analysed
whether regularized TLS can help making the system more robust. The optimal
regularization parameter λopt was selected as in the RR simulation. The range of λ
was set between 0 and the smallest singular value σ̄2

L+1. For λ = σ̄2
L+1 the RTLS

equals the unregularized PM solution and for λ = 0 the RTLS equals the TLS.
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(a) Histogram of room temperature (b) Mean and standard deviation of one room
transfer function

(c) Mean of all M × L magnitude standard
deviations across the 200 MC iterations

(d) Mean of all M × L phase standard devia-
tions across the 200 MC iterations

Figure 3.2: Statistical properties of the room transfer functions

3.4.3 Resampling Temperature
The effect of resampling is simulated for three different filter implementations in the
condition of varying room temperatures HR. The first two approaches, w0,res and
w0,res,err, are based on the initial filters w0 and resampled according to equation
2.47. For the resampling of the filters w0,res the exact temperatures Tnew and Tinit

match the real room temperatures that were used for the calculation of the room
transfer functions. In situ these temperatures could never be determined with perfect
accuracy. To simulate errors in the temperature measurement the filters w0,res,err

are based on normally distributed Tnew, with a mean of the real temperature and a
standard deviation of 1 °C. The third implemented filter wRR,res is based on the RR
filters without the presence of measurement errors.

The resampling of the filters is based on the resample function in MATLAB using
linear interpolation. Since the filters are discrete resampling is an approximation that
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contains small errors.

3.4.4 Probability Model Optimization (PMO)
In order to calculate the PMO filters from equation 2.48 one needs to have good
knowledge about the distribution of the underlying transfer function matrix. In this
simulation the speaker and room transfer functions were modeled just as described in
section 3.2 and 3.3, so the statistical properties of the distributions are the same as
in the MC simulation. The calculation of the filters is based on 150 transfer function
matrix simulations. The random seed was changed compared to the MC simulation
such that the filters are based on transfer functions of the same statistical properties,
but not on the exact same transfer functions as they are used on. The mean of these
150 matrices as well as the mean of the gram matrices was then utilized in equation
2.48 to gain the filters wP MO,S , wP MO,R and wP MO,SR. Each of these filters was
calculated by the same procedure for speaker errors, room transfer function errors
and the combination of both.
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CHAPTER 4
Simulation Results

In the following chapter the results from the simulations are presented. Goal of
the simulations is to investigate how well different filters perform in different error
conditions. Two different error conditions and their combination are simulated: Room
transfer function errors, speaker transfer function errors and the combination of both.
As described in chapter 3 they are simulated by a set of 200 transfer function matrices
HR, HS and HSR respectively. The analyzed filters w0, representing the OLS filters,
the RR filters wRR and TLS filters wT LS are based on the initial transfer function
matrix H0. The filters w0,res, w0,res,err and wRR,res are resampled from w0 and
wRR. The filters wP MO,S , wP MO,R and wP MO,SR are based on the probability
distributions of the transfer function matrices in the presence of speaker transfer
function errors, room transfer function errors and both. The results are summarized
in table 4.1.

4.1 Influence of transfer function errors
The influence of speaker and room transfer function errors is illustrated in figure 4.1
and summarized in the first four rows of table 4.1. The results are compared to the
achieved contrast when the initial filters w0 match the transfer function matrix H0.
The result from the matching filter - transfer function combination are illustrated by
the black line in figure 4.1. It can be observed that the optimal pressure matching
filters achieve a high acoustic contrast of around 30 dB for most of the frequency
range up to 100 Hz. For the higher frequencies the acoustic contrast decreases, such
that the average acoustic contrast between 150 and 300 Hz is only 18.5 dB and the
minimal acoustic contrast is only 8 dB at 294 Hz. Møller et al. [Møl+19] explain
the poor acoustic contrast at higher frequencies by observing linear independence in
the transfer function matrix. At high frequencies the modal density is high and the
wavelengths are short, so the sound field changes rapidly across the room. Therefore
the microphones sampling the sound field are fairly independent. Since there are
only L = 8 loudspeakers to control the sound field at M = 150 microphone positions
the system is overdetermined and the target sound field pt is not in the span of
H0. The resulting projection on to the span of H0 (the PM solution) is poorer, the
reproduction error greater and the acoustic contrast smaller. At lower frequencies the
wavelength increases and the modal density is lower. The sound field changes slowly
across the room and adjacent microphones will be highly correlated. The system is
less overdetermined and the PM solution has a smaller error, the acoustic contrast is
greater.
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Figure 4.1: Influence of transfer function errors on the PM performance. Continous
line: Mean AC across MC iterations, Dotted: ± Standard deviation across MC iter-
ations

The achieved acoustic contrast using the initial filters w0 in the presence of speaker
errors HS is illustrated by the red line. The acoustic contrast is decreased by 3.5 dB
in the low frequency range up to 60 Hz, but only by 0.4 dB in the high frequency range
between 150 and 300 Hz. Looking at the standard deviations of the speaker phase
and magnitude in figure 3.1c and 3.1d one can notice that the phase and magnitude
errors are generally smaller at low frequencies. To explain why small errors result in
greater decrease of contrast at low frequencies one can look at the condition number
of the gram matrix H0

HH0 in figure 4.2b. As explained in section 2.4.2 a high
condition number often implies a sensitive PM solution, as the individual columns
of the transfer function matrix are correlated. The high condition number at low
frequencies is a consequence of the high correlation between adjacent microphones.
This high correlation in the row space makes the transfer function matrix nearly
rank-deficient [Møl+19], so the first singular vector contains most of the information.
The first singular value is high and the last singular value small, resulting in a great
condition number. A consequence of the high condition number is that the PM
solution can become very large. This can be expressed in terms of the control effort
which measures the total signal power emitted to the room relative to a reference
power. The control effort of the initial filters is plotted as the black line in figure
4.3. It can be observed that the control effort at very low frequencies below 50 Hz is
significantly higher than at high frequencies. So the PM solution is very sensitive to
transfer function errors at low frequencies and fairly robust at higher frequencies.

The effect of the correlation in the sampled sound field is therefore two-sided.
The low correlation at high frequencies makes the system overdetermined resulting
in a poorer, but more robust solution. At very low frequencies the system is almost
underdetermined, good acoustic contrast can be achieved but at the cost of high
control effort and sensitivity.
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The blue line in figure 4.1 shows the effect of varying room temperatures on the
acoustic contrast. At low frequencies below 45 Hz the impact of changing room
temperatures is smaller than the impact of changing speaker transfer functions even
though the standard deviations of magnitude and phase are greater (see figure 3.2c
and 3.2d). The errors in the room transfer functions increase with frequency reaching
up to 1 dB magnitude and 30° phase standard deviation. However due to the higher
robustness at higher frequencies the impact in the frequency range up to 60 Hz is
3.8 dB but only 2.9 dB in the range from 150-300 Hz (see table 4.1).

The performance of the sound zones system with unregulated PM filters w0 in
the presence of speaker and room transfer function errors is illustrated by the green
line. Again the solution is the most sensitive at low frequencies such that the acoustic
contrast is decreased by 5.7 dB in the low frequency range 20-60 Hz and 3.1 dB in
the high frequency range 150-300 Hz.

(a) Singular values σl of transfer function ma-
trix H0 and lowest singular value σ̄L+1 of the
matrix [H0, pt]

(b) Condition number of H0
HH0

Figure 4.2: Singular values and condition number of initial transfer function matrix

4.2 Ridge regression
To show how big the impact of ridge regression can be on the performance of the
system, the optimal regularization parameters λopt have to be determined first. Figure
4.4 shows how the regularization parameter was determined in the presence of speaker
and room transfer function errors HSR. The mean reproduction error across the 200
MC iterations was calculated for each frequency and regularization parameter. The
optimal reproduction error is illustrated by the green line. The red lines indicate
where the reproduction error is increased by 1 dB relative to the optimal performance.
If the regularization parameter is too high the system becomes too constrained by
the regularization and the reproduction error increases rapidly. The introduced bias
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Figure 4.3: Control effort of different filters. Here the control effort is defined as the
total signal power relative to the power required to achieve same sound pressure in
the bright zone from the closest loudspeaker

makes the solution less sensitive to the underlying transfer functions and thereby fits
the problem less accurately. If the regularization parameter is too low the solution
equals the unregularized PM solution. It can be observed that the system is more
sensitive to over- rather than underregularization. When choosing a too small λ the
reproduction error is not increased by more than 1 dB for most of the frequency range.
On the other hand choosing a λ greater than the bottom red line drastically reduces
performance. A similar simulation was performed for the conditions HS and HR to
determine the respective optimal regularization parameter.

The results from the ridge regression simulations in these three conditions are
illustrated in figure 4.5 and summarized in table 4.1. The optimal filters wopt are
PM filters recalculated for each of the 200 iterations. The red, blue and green lines
correspond to the respective conditions in figure 4.1.

Looking at figure 4.5a one can observe the influence of ridge regression on the
robustness against speaker errors. Since the initial filters w0 are already quite robust
to speaker errors at high frequencies the gain from ridge regression is small. At low
frequencies however the mean acoustic contrast increased by 1.2 dB and the standard
deviation dropped.

The influence of room transfer function errors in figure 4.5b is smaller at low
frequencies and the ridge regression filters can achieve a similar acoustic contrast as
the optimal filters up to 45 Hz. Between 45 Hz and 150 Hz the regularization does
not have a significant impact. Above 150 Hz the acoustic contrast is increased by
0.6 dB relative to the unregularized filters.

In the presence of speaker and room transfer function errors the regularization
has the biggest impact at low frequencies below 50 Hz. In the range between 50 and
150 Hz the influence is 0.5 dB. At the higher frequencies the regularization can gain
0.7 dB.
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When comparing the OLS and RR solutions written in terms of the SVD in
equations 2.34 and 2.40 it becomes apparent that RR reduces the sensitivity at low
frequencies as the solution becomes less sensitive to errors in the direction of the low
singular values. At higher frequencies the transfer function matrix is more orthogonal,
the discrepancy between highest and smallest singular value decreases, errors in the
direction of the small singular values have less impact on the filter norm and ridge
regression is less effective. This can also be inferred from the control effort illustrated
in figure 4.3. The high effort at low frequencies is significantly decreased by RR, but
the impact decreases with frequency.

This little example showed that Tikhonov regularization alone can not regularize
the problem. Another important factor to consider here is that in this case the optimal
regularization parameter could be determined from multiple simulations. Usually
the sound zones problem is designed as a feed-forward problem, making an exact
parameter estimation difficult. Choosing a too high regularization parameter can
significantly degrade performance making the small gain observed at low frequencies
vanish easily.

Figure 4.4: Reproduction Error as function of frequency and regularization parameter
in presence of speaker and room transfer function errors HSR. The green line indi-
cates λopt, the optimal RR regularization parameter yielding the lowest reproduction
error. The red lines show where the system is underregularized (top red line) and
overregularized (bottom red line) such that the reproduction error is increased by 1
dB relative to the optimal regularization. Note that the frequency axis is linear for
better readability

4.3 Total Least Squares
The Total Least Squares filter wT LS are calculated using the smallest singular value
σ̄L+1 of the matrix [H0, pt]. The smallest singular value σ̄L+1 is illustrated in figure
4.2a along to the singular values σl of the transfer function matrix H0. It can be
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(a) Performance of ridge regression in presence of speaker transfer function errors HS

(b) Performance of ridge regression in presence of room transfer function errors HR

(c) Performance of ridge regression in presence of room and speaker transfer function errors
HSR

Figure 4.5: Performance of ridge regression in different conditions. Continous line:
Mean AC across MC iterations, Dotted: ± Standard deviation across MC iterations.
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seen that σ̄L+1 is strictly smaller than the smallest σl, which can be shown to be the
case for all TLS systems [The15]. It follows that the amount of deregularization σ̄2

L+1
increases with frequency.

The impact of TLS on the acoustic contrast is illustrated by the orange line in
figure 4.6b. It can be observed that the deregularizing property of TLS decreases
performance across the whole frequency range. The discrepancy is most severe at
low frequencies, even though σ̄2

L+1 is the smallest in this frequency range. But since
the deregularization increases the condition number of the inverted matrix it makes
the TLS very sensitive to errors. This is further illustrated by the control effort in
figure4.3. The effort of TLS filters is significantly higher, especially at low frequencies.

The selection of the optimal regularization parameter λopt is illustrated in figure
4.6a. The optimal RTLS regularization parameter is σ̄2

L+1 in almost the entire fre-
quency range. At no point does RTLS decrease the reproduction error by more than
1 dB relative to the OLS solution.

Overall TLS can not be used to make the PM system more robust to transfer
function errors. The opposite is the case. TLS can be effective in the presence of
small noise, but since the transfer function matrix can change significantly and TLS
decreases the stability of the system it can not be used in this scenario.

4.4 Resampled Temperature

The performance of the resampled filter w0,res and w0,res,err in the presence of room
transfer function errors HR is illustrated in figure 4.7 and summarized in table 4.1.
The performance of the resampled RR filter wRR,res is not illustrated but can also
be found in table 4.1.

It can be observed that resampling has high potential to mitigate the effect of room
transfer function errors. Above the very low frequencies below 50 Hz the resampled
filters w0,res come very close to the optimal solution wopt. At low frequencies however
the small inaccuracies caused by the resampling are enough to decrease the acoustic
contrast by 1.4 dB in the range from 20 to 60 Hz. To come even closer to the optimal
filters the resampled filters can be based on the more robust ridge regression filters.
As shown in table 4.1 the filters wRR,res achieve a better contrast across the whole
frequency range than w0,res.

The performance of the filters simulating resampling on flawed temperature mea-
surements w0,res,err is illustrated by the teal line in figure 4.7. It shows that even
when the temperature measurements are not exact they can help regularizing the
problem. Across the whole frequency range these filters perform almost 2 dB better
than the initial filters w0.
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(a) Reproduction Error as function of frequency and regularization parameter in presence of
speaker and room transfer function errors HSR. The green line indicates λopt, the optimal
RTLS regularization parameter yielding the lowest reproduction error. The red line shows
where the reproduction error is increased by 1 dB relative to the optimal regularization. The
frequency axis is linear for better readability

(b) TLS and RTLS performance in presence of speaker and room transfer function errors
HSR. The dotted lines indicate the ± standard deviations across MC iterations. The
performance of RTLS is illustrated by a dashed line, as it equals the performance of the
initial filter.

Figure 4.6: Performance of Total Least Squares and Regularized Total Least Squares
in presence of speaker and room transfer function errors HSR
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Figure 4.7: Performance of resampled filters w0,res and w0,res,err in presence of room
transfer function errors HR compared to optimal filters wopt and initial filters w0

4.5 Probabiblity Model Optimization
The results from PMO in the three error conditions is illustrated in figure 4.8. Figure
4.8a shows the robustness of the filters wP MO,S against speaker errors. It can be
observed that the regularizing effect above 60 Hz is marginal. Below 60 Hz however
the mean acoustic contrast increased by 1.4 dB and the standard deviation is reduced.

The robustness against room transfer function errors is shown in figure 4.8b.
Across the whole frequency range the acoustic contrast is increased and the stan-
dard deviation reduced relative to the initial filters w0. The regularization has the
most significant impact at low frequencies. Below 60 Hz the mean acoustic contrast
is increased by 1.3 dB. At higher frequencies the mean acoustic contrast increases by
0.4 db between 60 and 150 Hz and by 0.8 dB above 150 Hz. The standard deviation
is reduced by ∼1 dB.

The last condition HSR includes speaker and room transfer function errors. The
filters wP MO,SR have a big impact at low frequencies below 60 Hz, the mean acous-
tic contrast is raised from 26.6 dB to 28.5 dB and the results are a bit more stable
with a standard deviation of 2.5 dB. At the frequencies above 60 Hz the mean acous-
tic contrast is only increased by ∼0.5 dB, but the standard deviation was reduced
significantly by 0.9 dB.
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(a) Performance of PMO in presence of speaker transfer function errors HS

(b) Performance of PMO in presence of room transfer function errors HR

(c) Performance of PMO in presence of room and speaker transfer function errors HSR

Figure 4.8: Performance of PMO in different conditions. Continous line: Mean AC,
Dotted: ± Standard deviation
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Condition Filter Mean AC [dB]
20-60 Hz 60-150 Hz 150-300 Hz

H0 w0 32.4 ± 0.0 28.3 ± 0.0 18.5 ± 0.0
HSR w0 26.6 ± 3.3 24.0 ± 2.6 15.5 ± 2.2
HS w0 28.9 ± 2.7 26.5 ± 1.6 18.2 ± 0.5
HR w0 28.6 ± 2.5 24.8 ± 2.3 15.6 ± 2.1
HSR wRR 28.1 ± 2.9 24.4 ± 2.3 16.1 ± 1.9
HS wRR 30.1 ± 2.3 26.7 ± 1.4 18.2 ± 0.4
HR wRR 29.5 ± 2.2 25.1 ± 2.1 16.2 ± 1.9
HSR wT LS 24.0 ± 3.5 22.1 ± 2.9 13.7 ± 2.4
HS wT LS 26.6 ± 3.0 25.0 ± 1.9 16.7 ± 0.7
HR wT LS 26.1 ± 3.0 23.1 ± 2.5 13.9 ± 2.4
HR w0,res 31.0 ± 1.6 28.0 ± 0.6 18.4 ± 0.9
HR w0,res,err 30.6 ± 1.8 26.8 ± 1.6 17.4 ± 1.8
HR wRR,res 31.8 ± 1.8 28.0 ± 1.6 18.5 ± 1.8
HSR wP MO,SR 28.5 ± 2.5 24.5 ± 1.7 16.2 ± 1.3
HS wP MO,S 30.3 ± 2.1 26.7 ± 1.4 18.2 ± 0.4
HR wP MO,R 29.9 ± 1.6 25.2 ± 1.3 16.4 ± 1.2

Table 4.1: Table of simulation results. Mean acoustic contrast ± mean standard
deviation. The mean standard deviation here is the standard deviation across MC
iterations, averaged across the considered frequency bins. The mean AC is averaged
across MC iterations and frequency bins.
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CHAPTER 5
Discussion

The purpose of the performed simulations was to investigate two research questions.
First, it was asked how big the impact of transfer function errors is on the performance
of the sound zones system. The second question asked, to which extent different reg-
ularization strategies can reduce the sensitivity of the system. The following chapter
discusses the results and limitations of the performed simulations with respect to the
proposed research questions.

5.1 Limitations of Simulations
The impact of transfer function errors on the performance of the sound zones system
was investigated by simulating speaker and room transfer function errors. Conse-
quently the quality of the simulation results is determined by the validity of the
transfer function simulations.

The loudspeaker transfer function model, as described in section 3.2, focuses on
changes in the DC-Resistance of the coil and changes in suspension compliance. Non-
linear effects such as distortion products or level-dependent transfer function changes
are not considered. The impact of non-linear distortion is assumed to be small in the
considered frequency range [Ma+19], but level-dependent transfer function changes
can not be ruled out [Ma+18]. The introduced error model provides a framework for
error simulations and an estimate for the magnitude of the assumed loudspeaker trans-
fer function changes, however reliable measurements of a speaker transfer function
are necessary to validate this estimation.

The room transfer functions underlie a major simplification: It is assumed that
the temperature changes uniformly across the room. In situ this will never be the
case, every room has temperature gradients. The radiator has a different temperature
than the windows and walls, the ceiling will differ from the floor. To simulate the
transfer functions in the room in the presence of temperature gradients requires a more
elaborate numerical simulation since an analytical solution of the wave equation does
not exist in this case. The performed simulations can therefore only give an indication
of how big the influence of temperature changes is.

The second question of this report is, to which extent the impact of transfer func-
tion errors can be regularized using more advanced filter design. This was investigated
using four different filter concepts: The ridge regression filters wRR, the TLS filters
wT LS , the resampled filters w0,res and the PMO filters wP MO. Besides the TLS
filters, these different filters have in common that their performance relies on more
information about the underlying system than just the initial transfer function matrix
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H0. However, in situ this information might not be available, which could potentially
degrade performance significantly.

For the RR simulation the optimal filters were determined by the feed-back from
the simulations. The reproduction error was determined for a set of regularization
parameters. Based on these simulations the optimal filters were determined. This
sort of feed-back filter design is only available if the changes of the transfer function
matrix are known. In situ the choice of regularization parameter can be challenging.
Choosing a too high regularization parameter can deteriorate performance signifi-
cantly.

The performance of the resampled filters depends on two parameters: How well
the temperature can be measured in the room and how well the transfer functions
can be resampled. In the performed simulations it was assumed that the temperature
changes uniformly across the room, and that the boundary conditions of the room
do not change. Therefore the transfer functions can be retrieved nearly perfectly
when the temperature change is known. In situ this could not be assumed, affecting
the expected performance of the filters in situ. Olsen et al. [OM17] investigated
resampling in the sound zones problem in cars. It was shown that resampling was
not sufficient to have robust performance. However, their temperature variations were
much bigger (Tcold = −2 °C and Thot = 22.8 °C) and the boundary conditions in a
car are very different. It is assumed that the boundary conditions in cars, i.e. the
absorbing properties of the leather seats and interior, are temperature dependent. In
rooms most of the boundary conditions are defined by the walls, which might be less
temperature dependent. It has to be investigated in the future how well resampling
works in domestic rooms, when the temperature is non-uniform across the room.

The efficiency of the PMO filters is determined by the agreement of the statistical
transfer function properties used for determining the filters, and the real statistical
properties. In this simulation both distributions were generated by the same pro-
cedure, so their agreement is maximal. In situ an exact estimation of the transfer
function errors is impossible, so the performance of the simulated PMO filters is
better than possible in a real room.

Zhu et al. [Zhu+17] performed simulations and measurements analysing PMO
filters. The setup considered in that paper is different, the filter performance is evalu-
ated in an acoustically treated studio environment and the filters are based on acoustic
contrast control. One aspect of that paper was applying uniformly distributed mul-
tiplicative errors (ME) with an error bound of ±1 dB to the transfer functions and
comparing the performance of different filters. Two of these filters were PMO filters,
designed by the same principle, but one maximizes the acoustic contrast for an as-
sumed uniform multiplicative error bound of ±1 dB and one for an error bound of
±3 dB. They showed that both filters achieve similar performance when evaluated on
the the same multiplicative errors.

This motivated further research for this thesis, to investigate whether the PMO fil-
ters achieve similar contrast when the PMO filters are not based on the distributions
they are evaluated on. It was investigated whether a precise error model is necessary
to achieve good performance from PMO filters by evaluating the performance of less
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accurate PMO filters. The results are shown in table 5.1. The filters wP MOOver
and

wP MOUnder
are both based on the physical error model used to simulate the speaker

and room transfer function errors. The filter wP MOOver
however overestimates the

errors in the system, by assuming a uniform room temperature distribution from
17-29 °C and a wider spread gamma distribution of the voice coil temperature. The
filter wP MOUnder

underestimates the system errors by assuming a uniform room tem-
perature distribution between 22 and 24 °C and a narrower voice coil temperature
distribution. It is observed that the underestimating filter has a higher standard
deviation than the overestimating filter and that the performance of both filters is
worse than that of the matching PMO filters wP MO,SR. At low frequencies below
60 Hz however the sacrifice in mean acoustic contrast is small and the standard de-
viation is decreased significantly when overestimating the error sources. The filters
wP MOME0.1 , wP MOME0.5 , wP MOME1 and wP MOME3 assume uniform multiplicative
errors with error bounds of 0.1, 0.5, 1 and 3 dB, and phase error bounds of 0.6, 2.9,
5.7 and 17° to emulate the filters from Zhu et al. It can be observed that none of
the multiplicative error PMO filters can compete with the matching filter wP MO,SR

across the whole frequency range and that the filters perform best, when they slightly
overestimate the underlying error distributions (compare figures 3.1 and 3.2). The
filter wP MOME0.5 performs well at low frequencies where the transfer function errors
are small but significantly worse than the wP MO,SR filter at high frequencies where
the transfer function errors are higher. On the other hand the filter wP MOME3 per-
forms well at high frequencies but poorly at low frequencies. To attain a good PMO
filter it is therefore important to have a good error model, that allows to estimate
errors across the whole frequency range.

Overall, the simulated filters wRR, w0,res and wP MO should be seen as ideal filters.
So the simulations assess the possible gain in robustness provided precise knowledge
is available about the error sources.

5.2 Discussion of results

5.2.1 Effect of transfer function errors
The first research question of this thesis asked how big the impact of transfer function
errors is on the performance of the system. The results were analysed in section 4.1
and illustrated in figure 4.1. While the system shows the best performance at low
frequencies, it is also most sensitive due to the high condition number. This can be
seen by the influence of the speaker transfer function errors. The speaker transfer
function errors are in a similar order of magnitude at high frequencies 150-300 Hz and
at low frequencies 20-60 Hz (see figure 3.1c and 3.1d). However, the speaker errors
hardly have an impact on the acoustic contrast performance at high frequencies, while
the mean acoustic contrast is decreased by 3.5 dB at low frequencies. Further, since
the standard deviation across MC iterations is much higher at low frequencies the
maximal loss of acoustic contrast is even greater.
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Condition Filter Mean AC [dB]
20-60 Hz 60-150 Hz 150-300 Hz

H0 w0 32.4 ± 0.0 28.3 ± 0.0 18.5 ± 0.0
HSR w0 26.6 ± 3.3 24.0 ± 2.6 15.5 ± 2.2
HSR wP MO,SR 28.5 ± 2.5 24.5 ± 1.7 16.2 ± 1.3
HSR wP MOOver

28.2 ± 1.8 23.6 ± 1.3 15.2 ± 0.9
HSR wP MOUnder

27.9 ± 3 24.6 ± 2.3 15.9 ± 2
HSR wP MOME0.1 26.9 ± 3.3 24 ± 2.6 15.5 ± 2.2
HSR wP MOME0.5 28.3 ± 2.8 24.1 ± 2.6 15.5 ± 2.2
HSR wP MOME1 28.2 ± 2.2 24.4 ± 2.4 15.6 ± 2.1
HSR wP MOME3 25 ± 0.8 23.4 ± 1.8 16 ± 1.9

Table 5.1: Table of simulation results of different PMO implementations. Mean
acoustic contrast ± mean standard deviation. Again, the mean standard deviation
here is the standard deviation across MC iterations, averaged across the considered
frequency bins. The mean AC is averaged across MC iterations and frequency bins.
The top three condition - filter combinations are a reference from table 4.1. The filters
wP MOOver

and wP MOUnder
are determined from an over- and underestimated version

of the error model. The filters wP MOME0.1 , wP MOME0.5 , wP MOME1 and wP MOME3

assume uniform multiplicative errors with error bounds of 0.1, 0.5, 1 and 3 dB, and
phase error bounds of 0.6, 2.9, 5.7 and 17° respectively. The error condition HSR

contains speaker and room transfer function errors. The condition H0 is the initial
transfer function matrix on which the filter w0 is based.

At low frequencies the influences of speaker and room transfer function errors
on the acoustic contrast are in a similar order of magnitude. At higher frequencies
the room transfer function magnitude and phase errors increase (see figures 3.2c and
3.2d), such that the room transfer function errors also have a significant impact at
higher frequencies.

The loss of acoustic contrast at higher frequencies is critical, as even the optimal
filters only achieve an acoustic contrast of 18.5 dB (150-300 Hz). To attain a clearer
picture of the loss in acoustic contrast, the mean sound pressure level in the two
zones is illustrated in figure 5.1. This plot shows the impact of the combined speaker
and room transfer function errors for the optimal filters wopt, initial PM filters w0,
RR filters wRR and PMO filters wP MO,SR. The SPL in the bright zone is almost
unaffected by the transfer function error. The dark zone SPL, however, is increased
significantly in the presence of transfer function errors. This discrepancy can be
explained by the logarithmic scaling of the SPL. While the reproduction error is in
the same order of magnitude in both zones, the effect on the SPL is enhanced at low
levels. It is therefore hard to maintain silence in the dark zone.
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Figure 5.1: Mean Sound Pressure Level in bright (top lines) and dark zone (bottom
lines) in presence of speaker and room transfer function errors for different filters.
Dotted lines indicate ± standard deviation across MC iterations.

5.2.2 Comparison of different filters
Out of all the analysed filters the Total Least Squares filters wT LS show the worst
performance. The introduced deregularization by the squared smallest singular value
σ̄2

L+1 destabilizes the system. The mean acoustic contrast is significantly decreased
compared to the initial filters w0 in all error conditions. TLS is therefore not suitable
for the given sound zones setup.

Assuming that the temperature in the room changes uniformly, and that the
boundary conditions of the room are not temperature dependent, resampling can be
very effective at retrieving acoustic contrast. By also simulating measurement errors
with the filter w0,res,err it was verified that the acoustic contrast performance can be
improved with resampling even when the measurements are not slightly inaccurate.
Especially at high frequencies resampling was shown to be effective. The performance
at low frequencies can further be improved by resampling the RR filters wRR.

Ridge regression is most effective when the sensitivity is caused by collinearity
in the transfer function matrix. At low frequencies the sound field sampled by the
microphones is highly correlated [Møl+19], so the control effort is high and ridge
regression is effective. At higher frequencies the regularizing effect is less prominent.
Since over-regularizing can deteriorate system performance drastically it is safer to
choose too little regularization when establishing a feed-forward system. This how-
ever reduces the achievable gain, making the effect of high frequency regularization
negligible.

The PMO filters increase robustness of the system to transfer function errors.
Both, the mean and the standard deviation are improved compared to the initial
filters w0. Especially at low frequencies the mean acoustic contrast can be increased
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significantly. At high frequencies the improvement in mean acoustic contrast is less
prominent, but the standard deviation is significantly reduced in the presence of room
transfer function changes.

Compared to the RR filters the PMO filters have a slightly higher mean acoustic
contrast for all frequencies and error conditions. The standard deviation is signifi-
cantly reduced in the presence of room transfer function errors.

Overall, the PMO filters achieve high acoustic contrast with a low standard devia-
tion. However, as discussed earlier, the PMO filters were based on the same statistical
model as the error model on which the performance was evaluated on. Basing the
PMO filters on different error models decreases performance.

In general, when comparing the resampled filters, RR filters and PMO filters
it becomes apparent that an increasing amount of knowledge about the underlying
transfer function errors can be leveraged to improve the sound zones performance.
An exact temperature measurement allows to resample the filters, which can almost
retain optimal performance. To achieve this near optimal performance the filters have
to be updated constantly, whenever the room temperature changes. The resampled
filters thereby depend on a current transfer function estimation, whereas the RR
and PMO filters can be formulated based on the statistical properties of the transfer
function distributions. The PMO filters perform better than the RR filters, when the
underlying distribution is known, however when the PMO filters are based on over-
or underestimations of the transfer function errors this high performance can not be
sustained. The RR filters on the other hand also depend on a good estimation of
the regularization coefficient. A poor estimation of the regularization coefficient can
significantly reduce performance. Therefore, the performance of sound zones systems
can significantly be improved by accurate error models.



CHAPTER 6
Conclusion

In this thesis an error model was proposed that aims at simulating transfer func-
tion errors that can arise in the sound zones context at low frequencies. The focus
thereby was on simulating room transfer function errors resulting from changes in
room temperature and changes in the loudspeaker transfer function.

Further, the influence of these transfer function errors was investigated from
Monte-Carlo simulations. It was shown that changes in room temperature can have
a significant impact on the acoustic contrast across the whole frequency range from
20-300 Hz. The influence of the loudspeaker transfer function errors on the perfor-
mance of the system was most prominent at low frequencies. At higher frequencies
from 150-300 Hz the loudspeaker errors only decreased performance marginally.

Different pressure matching filters were examined in terms of their performance in
the presence of the loudspeaker and room transfer function errors. The Total Least
Squares filters reduced robustness to errors and decreased acoustic contrast, so the
TLS filters are not suitable for the given scenario. While the initial ordinary least
squares filters and the TLS filters can be determined from a single transfer function
matrix, the other filters require further information about the system errors to be
determined correctly. Under the assumption that the room temperature is uniform
across the room, resampling can retrieve near optimal performance when the room
temperature is determined exactly. For the design of ridge regression filters one needs
to determine a regularization coefficient, that increases robustness to errors. However,
to determine this coefficient optimally, the transfer function errors need to be esti-
mated. A similar statement can be formulated for the PMO filters. While the PMO
filters can achieve significant improvements in mean acoustic contrast and standard
deviation, their performance depends on a precise error model. When choosing the
wrong regularization coefficient for the RR filters, or basing the PMO filters on inaccu-
rate error estimations can significantly impair performance. Therefore a well defined
error model, that can estimate the impact of different error sources is essential for
the design of robust pressure matching filters.

Future research could validate the performed simulations with measurements. It
would be of great interest to find out how well the introduced error model can sim-
ulate in situ transfer function errors. If the model does a fair job at simulating the
transfer function errors, PMO or RR filters could easily be designed for different
sound zones setups that could increase robustness. Further, it would be interesting
to investigate how well temperature dependent transfer function changes can be in-
ferred from resampling in the presence of temperature gradients in the room. This
could provide further insights into how effective resampling can be to be increase
robustness to temperature dependent transfer function changes.
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