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Abstract

With the aid of an array of loudspeakers, sound zone algorithms seek to reproduce
multiple distinct zones of audio inside an enclosure. Typical approaches determine
the loudspeaker inputs by optimizing over a cost function that models the sound
pressure inside the enclosure. However, recent methods propose cost functions that
include a perceptual model of the human auditory system, which further models
the perception of sound. This thesis investigates such an approach by proposing a
framework within which sound zones are constructed through optimization over a
perceptual model. The framework is used to propose two perceptual sound zone
algorithms: unconstrained and constrained perceptual pressure matching. Sim-
ulations of the proposed algorithms and a reference algorithm are presented to
determine the benefits of including auditory-perceptual information in sound zone
algorithms. From this, it is found that the unconstrained perceptual approach out-
performs the reference in terms of various perceptual measures. In addition, it is
found that adding perceptual constraints to the optimization problem allows for
control of sound zones which correlates well with other perceptual quality mea-
sures.
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I want to thank dr. J. Mart́ınez-Castañeda, M. Bo Møller, PhD, dr.ir. R.C. Hen-
driks, and dr. P. Mart́ınez-Nuevo for all their help and support during the project.
A special thanks to M. Bo Møller, PhD for often pushing me in the right direction
through our numerous whiteboard sessions. Secondly, I would like to give a special
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Chapter 1

Introduction

1.1 Preface: the Sound Zone Problem

Sound systems are used worldwide to fill rooms with enjoyable audio content. Prob-
lems arise, however, when multiple people in the same room want to enjoy different
audio content simultaneously.

For example, one person may want to enjoy a movie on the television, while others
may want to listen to their music. If they are in the same room, their desires clash:
neither person can fully enjoy their chosen activity without disturbing the other. In
short, the interference of multiple audio sources can lead to a situation where both
individual experiences are diminished.

In recent years, attempts have been made to solve this problem by controlling the
spatial reproduction of sound in such a way that different areas in a room have
distinct content without interfering with each other. This is typically done by
controlling the sound pressure created by an array of loudspeakers.

One attempt at solving this problem is through the use of sound zone algorithms [1].
Sound zone algorithms partition the space of the room into multiple so-called sound
zones. Each sound zone is assigned different audio content. The sound zone algo-
rithms decide how to use the sound system’s loudspeakers to reproduce the specified
audio content in each zone. Using the principles of constructive and destructive in-
terference, this is done in such a way that there is minimal interference between
zones [1]. That is to say: the audio content of each zone is not audible in the
others.

In the previously listed example, where one person watches television and the other
listens to music, there would be one zone that would contain the audio of a movie
and another zone that would contain music. An image depicting the situation is
given in Figure 1.1. The sound zone algorithm determines how to best use the
sound system to reproduce these two zones. In the ideal case, both people can now
enjoy the full potential of their audio content without bothering one another.

In practice, however, the sound zone algorithm will not always do a perfect job [2].
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Zone B:
Music

Zone A:
Movie

Figure 1.1: A room containing a sound system consisting of an array of loudspeakers and two
zones. The goal of the sound zone algorithm is to control the sound system in such a way that
the red zone contains the audio of a movie, and the blue zone contains the music with minimal
interference.

The performance of algorithms depends on the environment and the available sound
system. Depending on the chosen zones, number and position of the loudspeakers,
and the room, the interference between zones can typically only be reduced by
so much. As such, the audio content of one zone is often still audible in other
zones [2].

Improving sound zone algorithms is thus an active topic of research. One recent
approach is to include a model of the human auditory system, which models how
humans perceive sound. Typically, sound zone algorithms use sound pressure [1],
which is a physical quantity characterizing the sound. Sound pressure does not
always accurately describe what is important for the perception of sound. Including
a perceptual model may allow the algorithm to focus on reproducing and canceling
the parts of the audio content that matter perceptually.

Early results show that a perceptual sound zone approach is promising. Recent
work by Donley et al. explored including the absolute threshold of hearing, which
models the lowest sound pressure humans can hear, into sound zone algorithms.
This pursuit found an increased quality of the reproduced audio in the zones [3].
Other work by Lee et al. showed that including a perceptually motivated weighting
in the sound zone algorithm outperforms traditional algorithms [4, 5].

This work seeks to explore this perceptual approach further. This is done by propos-
ing novel perceptual sound zone algorithms based on the pressure matching ap-
proach. The proposed method is then used to determine the benefits of including
perceptual information into sound zone algorithms.
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1.2 Objectives and Organization

As stated in the preface, this thesis investigates the methodology and the benefits of
including perceptual information in sound zone algorithms. To this end, the work
in this thesis seeks to answer two research questions:

• RQ1: “How can auditory perceptual models be included in sound zone algo-
rithms?”

• RQ2: “What are the benefits of including auditory perceptual models in
sound zone algorithms?”

The answers to these questions are summarized in the conclusion given by Chapter 6.
What follows is a description of the approach that is taken in answering these
research questions, alongside the structure of the rest of this document.

1.2.1 Creation of Perceptual Sound Zone Algorithms

The first research question RQ1,

“How can auditory perceptual models be included in sound zone algorithms?”

is answered in Chapter 2, Chapter 3, and Chapter 4. These chapters document
the design of a perceptual sound zone algorithm. The chapters are structured as
follows.

• First, in Chapter 2 a literature review is performed to determine which percep-
tual models are suitable for use in a perceptual sound zone algorithm. In this
pursuit, one perceptual model is found to be the most promising and discussed
in further detail.

• Next, in Chapter 3 a perceptual sound zone framework is proposed, which
uses the selected perceptual model. This framework is motivated through a
literature review of existing sound zone approaches and by reflecting on the
mathematical properties of the perceptual model.

• Finally, in Chapter 4 the proposal of two perceptual sound zone algorithms
that employ the proposed perceptual sound zone framework is discussed.

1.2.2 Determining Benefits of Perceptual Sound Zone Algorithms

The second research question RQ2,

“What are the benefits of including auditory perceptual models in
sound zone algorithms?”

is answered in Chapter 5, where the perceptual sound zone algorithms derived in
answering RQ1 are analyzed and compared with a non-perceptual reference sound
zone algorithm.
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Chapter 2

Review and Implementation of
Perceptual Models

In the field of psycho-acoustics significant research has been done in characteriz-
ing the auditory perception and time-frequency analysis capabilities of the human
ear [6]. From this understanding, several perceptual models have been proposed
which aim to model the perception of auditory stimuli by humans [7].

Perceptual models are employed for various purposes. Objective audio quality mea-
sures, for example, are perceptual models which aim to predict the perceived quality
of audio [8]. In another example, perceptual audio coding uses models of auditory
perception to minimize the perceived artifacts introduced when performing the com-
pression of audio [9].

In general, many perceptual models operate on a time-frequency internal-ear repre-
sentation of the input stimuli, obtained by applying an analysis filter bank. Among
other effects, the filtering performed by the human ear is often taken into account
at this stage [7, 10]. This representation is then used to determine its perceptually
relevant aspects of the input stimuli [9].

One aspect often used in perceptual models are the various auditory masking prop-
erties of the input stimuli [9]. In general, auditory masking refers to the effects
one sound has on the perception of other sounds [6]. In simultaneous masking, for
example, one loud tone may overpower a tone of a similar frequency, rendering the
latter tone inaudible [6].

Another aspect that is often used is the “threshold of hearing”, which determines
the minimum sound pressure level that can be perceived by a human [9]. Combining
this principle with the masking properties, one can define the “masking threshold” of
input stimuli. This threshold determines the sound pressure level required for other
stimuli to be audible to a human observer in the presence of the input stimuli [6]
and is often used in perceptual models [7, 10]. For example, the threshold of hearing
is used in perceptual audio coding to make the coding artifacts inaudible [9].

This chapter will motivate the use of the “Par distortion detectability” as the per-
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ceptual model used in perceptual sound zone algorithm framework proposed in
Chapter 3, which is subsequently used in Chapter 4 to propose two perceptual
sound zone algorithms. In doing so, several other perceptual measures are dis-
cussed in detail, some of which are used in Chapter 5 to evaluate the performance
of the proposed algorithms.

The structure of this chapter is given as follows.

• This chapter begins with Section 2.1 which documents a review of possible
candidate perceptual models from literature for use in the perceptual sound
zone framework.

• Next, Section 2.2 motivates the selection of one of the reviewed candidates,
namely the “Par distortion detectability”, as the perceptual model for use in
the proposed perceptual sound zone framework.

• Finally, the implementation and behavior of the “Par distortion detectability”
is discussed in more detail in Section 2.3.
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2.1 Review of Perceptual Models from Literature

This section documents a review of perceptual models that are promising for use in
perceptual sound zone algorithms.

Especially promising are models that attach some “score” or “rating” to the per-
ceptual quality of input signals. These ratings can be used in algorithms to obtain
an optimal rating through optimization. In addition to this, they can also be used
to quantify the quality of the algorithms in Chapter 5. As such, the focus of the lit-
erature review is not on the latest findings in the field of psycho-acoustics or models
that most accurately emulate the behavior of the human ear but rather on models
that quantify a perceptual quality.

In addition to this, the review also focuses on the optimization tractability of the
models. This information is used in Section 2.2 to motivate the use of the “Par
distortion detectability” perceptual model in the proposed perceptual sound zone
algorithm.

To this end, in this section, two categories of perceptual models are considered.
First in Section 2.1.1, “objective measures” are discussed. These are models which
attempt to predict the perceptual quality ratings from listening tests. Next, per-
ceptual models from “audio coding” are discussed in Section 2.1.2. These models
are typically used to quantify how audible audio compression artifacts are.

2.1.1 Review of Objective Measures

In order to objectively determine the perceived quality of audio, one approach is to
use listening tests. These are tests in which subjects are asked to rate a property
(or properties) of a set of audio stimuli. One example where listening tests are used
is for the evaluation of speech intelligibility of hearing aids [11]. Another example
is determining which loudspeaker has higher perceived sound quality.

Performing listening tests is, however, often cumbersome due to the large amount
of human labor involved. This motivates the use of objective quality measures,
which attempt to predict the outcomes of these objective listening tests. This is
very useful for algorithm developers, as they can get an indication of how well they
are doing without having to perform a labor-intensive listening test [11].

Note, however, that an objective quality measure does not replace a listening test:
it can only be used to give an indication. Findings should always be confirmed with
listening tests.

The objective measures that are considered in this review take a reference and de-
graded audio stimuli as inputs. Most of the discussed models take the following
approach. First, input stimuli are converted to their so-called internal representa-
tions, which models how the human auditory system transforms the stimuli. Various
features are then derived from this internal representation. The features are then
mapped to a prediction of the results of a listening test.

These objective quality measures are promising for integration into sound zone
algorithms as they summarize the quality of a signal into a single value, which can
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be potentially optimized. It stands to reason that if an objective quality measure
correlates with audio quality, optimizing over such a measure could improve the
sound quality of sound zone algorithms.

As such, this section explores various objective measures. This is done by con-
sidering three classes of different objective measures: measures that quantify the
quality and intelligibility of speech audio and measures for the general quality of
audio.

2.1.1.1 Review of Objective Speech Quality Measures

There have been a number of attempts to create objective measures to quantify the
perceived quality of speech. In this section, three objective speech quality measures
are discussed. Of these three measures, the Perceptual Evaluation of Speech Quality
(PESQ) is used in the evaluation of the proposed perceptual sound zone algorithm
in Chapter 5.

• Perceptual Evaluation of Speech Quality (PESQ) [12] is a measure that at-
tempts to determine the perceived quality of speech. It was standardized by
the International Telecommunication Union (ITU-T) in 2001.

PESQ is computed by first applying an auditory transform that maps the refer-
ence and degraded speech into a time-frequency representation that models the
perceived loudness of the signals. From this internal representation, so-called
symmetric and asymmetric disturbances are determined by computing differ-
ences between the time-frequency bins of the reference and degraded speech.
A non-linear average is then taken to obtain the average disturbance per time
bin. These averaged disturbances are then mapped to the outcomes of listening
test outcomes through linear combination [12].

• The Perceptual Objective Listening Quality Assessment (POLQA) [13] is a
speech quality measure that was standardized by the International Telecom-
munication Union (ITU-T) in 2011. It was intended to be the successor of
PESQ, with the improvement of having more accurate predictions on a broader
range of distortions.

POLQA works with a similar internal representation to PESQ but computes
distortion in a different way as to be capable of handling global temporal
compression and expansions [13].

• Virtual Speech Quality Objective Listener (ViSQOL) [14, 15] is a measure
developed in 2012 in a collaboration between Trinity College and Google.

ViSQOL uses a different internal representation than PESQ and POLQA as
it uses neurograms rather than loudness representations. The neurograms
are then compared through the Neurogram Similarly Index Measure (NSIM).
Neurograms contain the neural firing activity of the auditory nerve in time-
frequency bins, and NSIM determines how similar the firing patterns of two
neurograms are. This similarity is then related to the outcomes of listening
tests through a laplacian fit [14], which is then used to make predictions.
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In general, PESQ, POLQA, and ViSQOL require many steps to compute and are
difficult to optimize for due to conditional branches within the algorithms and many
non-differentiable steps such as clipping [12, 13, 14]. Some attempts have been made,
however, to reformulate PESQ in order to make it more tractable for optimization
by approximating the disturbances by other functions [16].

2.1.1.2 Review of Objective Speech Intelligibility Measures

Intelligibility of speech is defined as the percentage of words identified correctly
given a degraded speech signal. Objective speech intelligibility measures seek to
predict this percentage. In this section, the Short-Time Objective Intelligibility
(STOI) [11] measure and the Speech Intelligibility In Bits (SIIB) [17] measure are
discussed. Both measures are used in the evaluation of the proposed perceptual
sound zone algorithm in Chapter 5.

• The Short-Time Objective Intelligibility (STOI) [11] was proposed by Taal
et al. in 2011 as a speech intelligibility measure that could make accurate
predictions for speech signals degraded by time-frequency weighted distortions.

For its internal representation, it finds a time-frequency internal representation
through filtering the input stimuli with a filter bank consisting of 1/3 octave
bands, and then segmented the filter taps into short time frames. Silent bins
that do not contain speech are removed, and clipping is applied to limit the
effect of one severely degraded time-frequency bin. The average correlation
coefficient between the time-frequency bins of the internal representation of
the reference and degraded segments is then computed and averaged over all
bins to determine the intelligibility [11].

• The Speech Intelligibility In Bits (SIIB) [17] was introduced by Van Kuyk et
al. in 2017 as a speech intelligibility measure that could be motivated through
the mutual information rate from information theory. As such, SIIB is given
in bits.

The idea behind SIIB is that the intelligibility of speech is related to the infor-
mation shared between intended and degraded speech. SIIB models how the
reference speech signal transforms to the degraded speech signal as a trans-
mission channel. Among other aspects, this transmission channel includes a
model of the human auditory system [17]. This communication channel is then
used to compute the mutual information rate.

Both STOI and SIIB are difficult to optimize for directly. In STOI, the removal
of silent regions and the clipping operator are non-differentiable operations. Fur-
thermore, the computation of the correlation coefficient is a non-convex function
of the degraded speech [11]. SIIB is in general non-convex and non-differentiable
as it uses the Karhunen-Loève transform and a K-nearest neighbor estimator to
compute the mutual information rate [17]. However, if the communication channel
is approximated as Gaussian, the mutual information can be computed in closed
form, and SIIB becomes a differentiable measure [17].
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2.1.1.3 Review of Objective Audio Quality Measures

The previous objective quality measures are both intended for evaluating speech.
In this section, two objective quality measures are discussed that are designed for
evaluating the perceived quality of any audio stimuli.

• The Perceptual Evaluation of Audio Quality (PEAQ) [18] is an audio quality
measure standardized by the International Telecommunication Union (ITU-T).

PEAQ estimates a quality grade by first computing an internal representation
of the reference and degraded audio signals. This results in a time-frequency
representation of the input stimuli from which several perceptually relevant fea-
tures, referred to by PEAQ as Model Output Variables (MOVs), are extracted.
An example of these MOVs is the loudness of the noise or the bandwidth of
the input stimuli. These MOVs are then mapped to the final audio quality
grade through a neural network [18].

• In 2015, it was found that, with some adjustments, the previously discussed
ViSQOL measure could be used to determine audio quality. This resulted in a
new measure, ViSQOLAudio [19].

Among the adjustments were the removal of the voice activity detector included
in ViSQOL and the use of a larger bandwidth to cover the entire spectrum of
hearing from 50 Hz to 20000 Hz, rather than just the bandwidth of speech [19].

PEAQ and ViSQOLAudio are both difficult to optimize. A number of the MOVs
computed in PEAQ, such as the partial noise loudness, are non-differentiable [18].
As ViSQOLAudio is similar to ViSQOL with some minor adjustments, it is similarly
challenging to optimize.

2.1.1.4 Review of the Distraction Model

In an elicitation study performed by Francombe et al. in 2014 [20], “distraction”
was determined to be the keyword that best describes the perceptual experience of
interfering audio programs. Further research led to the proposal of a “distraction
model”, which is capable of estimating how distracting an interferer stimulus is
given a certain target stimuli [21]. This model was designed with the application of
sound zones in mind and is as such an especially promising for use in the evaluation
of the proposed algorithm in Chapter 5.

To create the model, a listening test was performed where the participants were
subjected to audio-on-audio interference. The subjects were played a target audio
stimulus they were instructed to focus listening to. At the same time, an interferer
audio stimulus was played to distract the participant from the target. The partici-
pants were given a scale between 0 and 100 on which they were asked to rate how
distracting the interference was when listening to the target program, where a 100
indicates that the interferer “overpowered” the target audio [21].

The target-interferer stimuli pairs and corresponding ratings resulted in a dataset.
This dataset was then used to fit a model which predicted the distraction given novel
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a target-interferer stimuli pair. The model consisted of taking a linear combination
of 5 features that were computed from the stimuli [21].

Computing said features could, however, not be performed in real-time. The reason
for this was that the original distraction model is too computationally complex [22].
To this end, in 2017, Rämö et al. proposed a version of the distraction model
that could be run in real-time. This was done by approximating the features of
the original distraction model by less computationally complex alternatives. The
resulting real-time distraction model was found to be less precise but could be run
in 0.04% of the time of the original distraction model [22].

At face value, the real-time distraction model seems promising to optimize. How-
ever, while easy to compute, the model is non-differentiable as the model uses
piecewise functions and non-convex due to taking the logarithm of the square of the
input signals. In addition to this, the model also performs operations that are dif-
ficult to express mathematically, such as counting the number of short-time blocks
that exceed a certain threshold [22].

2.1.2 Review of Perceptual Models used in Audio Coding

The second class of perceptual models that are considered are the perceptual mod-
els used in audio coding. Audio coding algorithms attempt to find a low-bitrate
representation of an audio input signal, which is a form of lossy compression. As
such, audio coding algorithms typically introduces errors in doing so, which can be
a detriment to the listening experience.

To minimize the impact of these errors, many audio coding algorithms use a per-
ceptual model to quantify how disturbing the introduced distortions are [9]. The
perceptual model is used to introduce encoding errors in such a way that the au-
dio output signal is minimally perceptually distinguishable from the audio input
signal [10]. This model typically takes the form of a distortion function which de-
termines how audible the difference between a reference input audio signal and a
distorted output audio signal is. This function can be used to, for example, encode
an input audio signal such that it has minimal distortion for a specified bitrate.

The perceptual models used in audio coding are promising for integration into a
sound zone algorithm, as they are often tractable for optimization. As stated,
these perceptual models typically take the form of some distortion function that
quantifies how perceptually disturbing the introduced artifacts are. One approach,
for example, could be to define sound zone algorithms that minimize said distortion
function.

2.1.2.1 Review of Perceptual Models from ISO MPEG Standard

The ISO/IEC 11172-3 standard specifies a coded representation for audio files [23],
and a corresponding decoder. An encoder for said representation is not part of the
standard. This is done deliberately to allow for future improvements to the encoder
without having to change the standard [24].

The standard does, however, provide a number of examples of possible encoders with
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increasing complexity. Alongside these example encoders, two psycho-acoustical
models are included for use during the encoding process.

The psycho-acoustical models work by subdividing the input audio signal into fre-
quency bands that correspond to the frequency bands in the human auditory system.
The model then determines how much quantization noise can be added separately
per band without the noise becoming audible. As such, the model assumes that the
distortion signal is noise-like [7], which is usually the case for quantization noise for
audio coders.

The output of the psycho-acoustical model is thus the amount of noise that can
be added per band. In the case of audio coding, this can then be used to control
quantization noise. Note that this perceptual model does not come in the form of
the earlier described distortion function. This technique has, however, been used
for various signal processing purposes, such as audio watermarking [10]. As such,
examples exist from which optimization schemes could be inspired.

2.1.2.2 Review of Par Distortion Detectability Measure

In 2005, van der Par et al. proposed a novel perceptual model designed for use
in audio coding [7]. The model defines a distortion measure that determines the
“distortion detectability” of a distortion signal in the presence of a masking signal.
That is to say, the function quantifies the degree to which a human is to detect a dis-
tortion signal while also listening to the masking signal. For audio coding purposes,
this distortion signal is the error introduced due to the audio compression.

Similarly to the ISO MPEG perceptual models, the Par detectability typically op-
erates on short-time segments, typically in the order of 20 to 200 milliseconds [7].
The proposed method, however, differentiates itself from the previously discussed
ISO MPEG models in three ways.

Firstly, the paper uses newer findings from psycho-acoustic literature, namely spec-
tral integration. In spectral integration, the masking effects from neighboring bands
are taken into account when computing the masking effects. The psycho-acoustical
models defined in the ISO MPEG standard does not do this as it effectively works
independently per band [10].

Secondly, it assumes that the distortion signal is sinusoidal rather than noise-like.
As such, it is more effective in hiding sinusoidal distortion.

Thirdly and finally, the perceptual model is described as a distortion function that
quantifies how detectable a disturbance stimulus is.

The proposed distortion measure can be expressed as a squared L2-norm, making it
tractable for integration into existing least-square problems. As such, the Par distor-
tion detectability has been used in many signal processing applications, examples
ranging from speech enhancement to removing perceptually irrelevant sinusoidal
components [25, 26].
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2.1.2.3 Review of Taal Distortion Detectability Measure

A paper from 2012 by Taal et al. proposed a novel perceptual model [10] which
introduces a alternative definition to the distortion detectability defined in the Par
distortion detectability.

In contrast to the approach proposed by van der Par et al. [7], the Taal distortion
detectability measure takes temporal characteristics of the distortion and masking
signals into account. The inclusion of temporal information allows for the suppres-
sion of “pre-echoes”, which is an artifact that the Par distortion detectability suffers
from [10]. The “pre-echoes” artifacts arise from the assumption that the masking
effects of the masking signal are stationary across time. As a result, audio coding
algorithms may assume that audio content is masked while it is not, resulting in
quantization noise not being masked.

In contrast to other temporal perceptual models, the Taal Detectability has a rela-
tively low computational complexity.

The computational demand was, however, shown to be higher than the Par distor-
tion detectability [10], especially for longer time segments.

13



2.2 Motivating Selection of Par Distortion
Detectability

From the perceptual models discussed in the literature review given in Section 2.1,
the Par distortion detectability is selected for use in the proposed perceptual sound
zone framework, as it is found to be the most tractable for optimization. This
section seeks to motivate this.

In Chapter 3 it is shown that sound zone algorithms are typically posed as opti-
mization problems. The goal of optimization problems is typically to minimize or
maximize a cost function, which is done by leveraging the (sub)differential of the
function.

Furthermore, many approaches are posed as convex optimization problems. Con-
vex optimization is a sub-class of optimization problems that guarantee that the
optimizer is globally unique [27]. As such, one does not have to deal with many sub-
optimal local optima. In addition to this, there are many efficient solvers available
for convex optimization problems.

As such, perceptual models which contain conditional branching or complex, non-
convex operations which cannot readily be integrated into cost functions are less
promising.

To this end, all the objective audio measures discussed in Section 2.1.1 are ruled
out for use in the perceptual sound algorithm. As discussed, all models showed a
degree of non-differentiability and non-convexity in their computation. They are
challenging to integrate into convex optimization problems and are therefore not
used in the proposed perceptual sound zone algorithm. They are, however, used in
the evaluation of the proposed perceptual sound zone algorithm.

From the three remaining perceptual models from audio coding, the perceptual
models proposed by the ISO MPEG standard are found to be the least promising.
As stated in Section 2.1.2, this is because these models do not define a cost function
that can be optimized over: instead, only the noise that can be added per auditory
band is determined.

As such, the decision is between the Par and Taal distortion detectability, which
are both expressed using a squared L2-norm, which is a convex function [27].

In contrast to the Par model, the Taal detectability takes into account the temporal
properties of the input signal. This is beneficial, as it will lead to a more accurate
description of the masking properties of the input signals. However, it has been
shown to be at the cost of computational complexity. The Taal detectability has
been shown to take at least two times as long to compute as the Par detectability,
with this disparity seemingly growing as a function of input signal length [10].

In addition to this, the Taal model operates on time-domain versions of the in-
put stimuli, whereas the Par model operates in the frequency-domain representa-
tions [7, 10]. Frequency-domain sound zone approaches are typically less demanding
computationally than time-domain approaches [28].
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As a lower computational complexity is desirable, the Par distortion detectability is
used in the proposed perceptual sound zone algorithm. Exploring the possibilities
of using the Taal detectability in a perceptual sound zone algorithm is found to be
promising but is left to future work and not further explored.
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2.3 Implementation and Analysis of the Par Distortion
Detectability

The Par distortion detectability is the perceptual model used in the proposed per-
ceptual sound zone framework. In this section, to give the reader a greater un-
derstanding of the model, the Par distortion detectability measure is considered in
greater detail.

This section is organized as follows. First, Section 2.3.1 gives a high-level descrip-
tion of the Par distortion detectability, providing an intuitive understanding and
introducing some of the notation that is used. Next, the steps for computing the dis-
tortion detectability are described in Section 2.3.2. Finally, Section 2.3.3 rewrites
the distortion detectability into terms of a squared L2-norm and provides some
analysis of the behavior of the resulting representation.

2.3.1 High-Level Description of the Par Distortion Detectability

In this section, a high-level description of the Par distortion detectability measure
is given. This is done to give the reader a basic understanding of the model before
going into greater detail.

The Par distortion detectability maps two input sequences to a positive real value,
i.e. D : (RNx ,RNx) 7→ R+. The two input sequences are the masking signal x[n] ∈
RNx and the disturbance signal ε[n] ∈ RNx . The distortion detectability of these
two sequences is denoted as D(x[n], ε[n]).

Imagine a human listening to both the masking signal x[n] and the disturbance
signal ε[n] simultaneously. The distortion detectability D(x[n], ε[n]) can be un-
derstood as how easily a human listener can detect the disturbance signal ε[n] in
presence of the masking signal x[n]. The signal x[n] is referred to as the masking
signal because its masking properties are used to determine how well it masks the
disturbance signal ε[n].

For this interpretation to be accurate, the signals x[n] and ε[n] should be short-
time signals. The paper uses a signal length of 20 to 200 milliseconds [7]. This is
important, as the model assumes that the psycho-acoustical properties of x[n] and
ε[n] are stationary.

The measure is normalized in such a way that the distortion detectability
D(x[n], ε[n]) is equal to 1 when the disturbance signal ε[n] is “just noticeable”
in presence of masking signal x[n]. That is to say: if the distortion detectability is
1, the disturbance is on the verge of being noticeable and not noticeable.

The distortion detectability D(x[n], ε[n]) can also attain a value larger than 1. The
larger values of the distortion detectability correspond with an increased perceived
presence of the disturbance signal ε[n].
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2.3.2 Computation Details of the Par Distortion Detectability

This section explores calculating the Par distortion detectability.k The first thing to
note about the Par distortion detectability is that it is computed using the frequency
domain representations of its inputs [7]. To this end, let X[k] and E [k] denote the
frequency domain representations of the masking signal x[n] and the disturbance
signal ε[n] respectively.

After determining the frequency domain representations, the Par distortion de-
tectability computes an internal representation of the input signals X[k] and E [k].
This internal representation models how the input stimuli appear to the human
auditory system. For the Par distortion detectability measure, this is modeled by
filtering the input stimuli.

Two subsequent filters are applied. The first filter models how parts of the ear
filter the incoming sound with an outer- and middle-ear filter Hom[k]. Next, a 4th

order Gammatone filter bank is applied, modeling the frequency-place transform
that occurs in basilar membrane inside of the ear [7].

The Gammatone filter bank consists of Ng filters. The frequency-domain represen-
tation of each individual filter is denoted by Γi[k], for 1 ≤ i ≤ Ng. The filters in the
filter bank Γi[k] have a bandwidth given by the equivalent rectangular bandwidth
(ERB) and center frequencies are given by the corresponding equivalent rectangular
bandwidth number scale (ERBS). Expressions for the gammatone filters Γi[k] are
provided by the original paper [7].

After filtering, the power per Gammatone filter tap is computed. Let Mi and Si
denote the output power of the ith filter tap for the masking signal X[k] and the
disturbance signal E [k] respectively. This output power can be understood as the
amount of power perceived per frequency band of the human ear. The relationship
between the input quantities and the output power of the filter taps can be given
as follows:

Mi =
1

Nx

Nx−1∑
k=0

|Hom[k]|2 |Γi[k]|2 |X[k]|2 , (2.1)

Si =
1

Nx

Nx−1∑
k=0

|Hom[k]|2 |Γi[k]|2 |E [k]|2 . (2.2)

The output powers can then be used to define the within-channel distortion de-
tectability Di per filter tap i. This can be thought of the distortion detectability
per frequency band of the human ear, and is defined as follows:

Di =
NxSi

NxMi + Ca
. (2.3)

Here, Ca is a calibration constant that ensures that the absolute threshold of hearing
is predicted correctly. This can be understood by considering the case where no
masking signal x[n] is present, in which case Mi = 0 for all i. If not for the
calibration constant Ca, the distortion detectability of any non-zero disturbance
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ε[n] would be infinite. In order to take the frequency-dependence of the threshold
of hearing into account, the previously described outer- and middle ear filters are
defined as the inverse of the threshold of hearing [7].

The distortion detectability D(x[n], ε[n]) can then be computed as the scaled sum
of all within channel distortion detectabilities. It is defined as follows:

D(x[n], ε[n]) = CsLeff

Ng∑
i=0

Di (2.4)

= CsLeff

Ng∑
i=0

∑Nx−1
k=0 |Hom[k]|2 |Γi[k]|2 |E [k]|2∑Nx−1

k=0 |Hom[k]|2 |Γi[k]|2 |X[k]|2 + Ca
. (2.5)

Here, Cs is a calibration constant chosen such that a just noticeable disturbance
signal results in a detectability of D(x[n], ε[n]) = 1. The constant Leff is the in-
tegration time of the human auditory system. It is chosen equal to the segment
length of x[n] and ε[n] in milliseconds.

In order to further understand distortion detectability, consider the behavior of the
expression of the detectability D(x[n], ε[n]) above. Imagine that the spectrum of
the masking signal is much larger than the disturbance signal, i.e. X[k]� E [k] for
all frequency bins k. In this case, the detectability of ε[n] will be small due to the
masking of the masking signal x[n] or due to the threshold of hearing (determined
by the calibration constant Ca).

Conversely, consider the case that the spectrum of the masking signal is much
smaller than the disturbance signal, i.e. X[k] � E [k] for all frequency bins k.
In this case, the resulting detectability is determined greatly by the calibration
coefficient Ca:

• If the total energy of the filtered disturbance signal is much larger than the
calibration constant Si � Ca for all i, the distortion detectability becomes
large. This models the case that the disturbance signal is large relative to the
threshold of hearing.

• Alternatively, if Si � Ca for all i, the disturbance signal is inaudible due to the
threshold of hearing, and the distortion detectability will be low accordingly.

The determination of the calibration constants Ca and Cs is discussed in Ap-
pendix A.

2.3.3 Least-Squares Formulation of the Par Distortion
Detectability

This section will rewrite the previously introduced detectability into a least-squares
representation [10]. This representation is more mathematically tractable than
Equation (2.5) and thus will allow for easier integration into existing sound zone
algorithms.

To obtain this expression, the sum of squares will be expressed as a L2 norm.
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Consider the following rewrite of the detectability given in Equation (2.5):

D(x[n], ε[n]) = CsLeff

Ng∑
i=0

∑Nx−1
k=0 |Hom[k]|2 |Γi[k]|2 |E [k]|2∑Nx−1

k=0 |Hom[k]|2 |Γi[k]|2 |X[k]|2 + Ca

=

Ng∑
i=0

(
CsLeff

||Hom[k]Γi[k]X[k]||22 + Ca

)
Nx−1∑
k=0

|Hom[k]|2 |Γi[k]|2 |E [k]|2

=
Nx−1∑
k=0

(
Ng∑
i=0

CsLeff |Γi[k]|2

||Hom[k]Γi[k]X[k]||22 + Ca

)
|Hom[k]|2 |E [k]|2

=
Nx−1∑
k=0

|Wx[k]|2 |E [k]|2

= ||Wx[k]E [k]||22 .
In this case, the norm is taken over the frequency-domain sequence indexed by k.
The rewrite above introduced perceptual weighting Wx[k] ∈ RNx informed by the
auditory masking effects of the masking signal x[n]. The entries of the perceptual
weighting can be understood as the importance of those frequencies for the total
detectability. The perceptual weighting Wx[k] is defined as follows:

Wx[k] =


√√√√ Ng∑

i=0

CsLeff |Γi[k]|2

||Hom[k]Γi[k]X[k]||22 + Ca

 |Hom[k]| . (2.6)

Note from this formulation that the perceptual weighting is only a function of the
masking signal x[n].

Note also that the resulting detectability D(x[n], ε[n]) is a convex function of the
disturbance signal ε[n]. This can be seen as follows. The frequency-domain repre-
sentation E [k] is related to the time-domain representation ε[n] through the DFT,
which is a linear operator. The perceptual weighting of E [k] performed by Wx[k] is
also a linear operation. As such, Wx[k]E [k] is an affine function of ε[n]. Finally, as
the composition of an affine mapping and a convex function is convex [27], the Par
detectability distortion is convex in ε[n].

In order to gain a deeper understanding of the behavior of the perceptual weighting
Wx[k], consider Figure 2.1. The figure relates the auditory masking threshold and
the corresponding perceptual weighting when a 1000 Hz tone at 70 dB SPL is used
as masking signal x[n]. The top plot depicts the masking threshold, and the bottom
plot depicts the corresponding perceptual weighting.

Recall that the masking threshold is the minimal sound pressure level that is re-
quired for an additional stimulus to be audible in the presence of the masking
signal [6]. In addition to this, the threshold of hearing is also depicted to highlight
the additional masking that occurs due to the masking signal.

As can be seen, the masking threshold peaks at 52 dB SPL at 1000 Hz. This implies
that a different tone at the same frequency must be at least 52 dB SPL to be audible.
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Figure 2.1: Depiction of the masking threshold and corresponding perceptual weighting function
for a 1000 Hz tone with an amplitude of 70 dB SPL. The threshold of hearing is also depicted.

As depicted, this results in a low perceptual weighting at 1000 Hz, implying that a
disturbance at this frequency is less detectable. Note also that the low and higher
frequencies are also weighted lower due to the threshold of hearing. This implies
that these frequencies are less important perceptually.
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Chapter 3

Perceptual Sound Zone
Framework Proposal

As mentioned in the introduction, the problem that sound zones seek to solve is
the reproduction of multiple types of audio content in the same room with minimal
interference. This way, multiple people can enjoy different audio content without
disturbing one another.

Faculty of Electrical Engineering, Mathematics and Computer Science

Content BContent A

Figure 3.1: A birds-eye view of a room is depicted. The room is divided into two zones: a red zone
and a blue zone. Each zone is assigned different content: content A and content B, respectively.
In the northern and southern parts of the room, a loudspeaker array is mounted on the walls.

This section seeks to build on this description to provide the understanding neces-
sary for the rest of this work.

Controlling the spatial distribution of sound is done by calculating the audio the
loudspeakers must produce to approximate the desired sound field in the given
space. The space inside the enclosure is divided up into multiple zones. Each zone
is assigned target sound pressure that we would like to have reproduced inside of
it. This target sound pressure could be any audio content, for example, music, the
sound of a movie, or speech.
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Figure 3.2: A birds-eye view of a room is given twice, each depicting two different sound zone
problems. Combining the solutions to both subproblems results in a reproduction of sound with
minimal interference between zones.

To understand this principle, consider the example given by Figure 3.1. The loud-
speakers array present in the room is to be controlled by the sound zone algorithm
so that the desired content is reproduced in each zone. As mentioned, this is to be
done in a way that results in minimal interference, e.g., it is undesirable to be able
to hear content B when inside the red zone.

There are various approaches to solving the sound zone problem. Sound zone prob-
lems are typically decomposed into a separate subproblem for every zone. Each one
of these subproblems considers only two zones: one bright zone and one dark zone.
The goal of each subproblem is to reproduce a specified target sound pressure in the
bright zone while restricting the sound pressure in the dark zones. The combination
of both subproblems provides a solution to the sound zone problem.

To ease the understanding of this concept, consider an example of this decomposi-
tion is given in Figure 3.2. Here, a decomposition of the example given in Figure 3.1
into two bright-dark zone pairs.

For the first problem, the goal is to reproduce “content A” in “bright zone A”
while minimizing the amount of sound pressure in “dark zone A”. Similarly, for the
second problem: reproduce “content B” in “bright zone B” while minimizing the
amount of sound pressure in “dark zone B”. Combining the two solutions results in
a solution with content reproduced in both zones with minimal interference between
zones.

The goal of the rest of this chapter is to motivate the proposal of a perceptual
sound zone framework that makes use of the Par distortion detectability introduced
in Chapter 2 in the construction of sound zones. This framework is then used to
propose perceptual sound zone algorithms in Chapter 4.

• This chapter begins in Section 3.1 with the presentation of a mathematical
model that can be used to describe the sound zone problem.

• This mathematical model is then used in Section 3.2 to describe the two main
sound zone approaches, “pressure matching” and “acoustic contrast control”.
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• Finally, Section 3.3 motivates the proposed perceptual sound zone framework
inspired by the pressure matching approach previously discussed.
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Zone AZone B

Figure 3.3: A birds-eye view of a room R ⊂ R3 containing the zones A ⊂ R and B ⊂ R depicted
in red and blue respectively. The room contains NL = 8 loudspeakers, which are denoted by the
red dots in the corners of the room.

3.1 Sound Zone Problem Data Model

In the previous section, a high-level description of the sound zone problem is given.
In this section, a mathematical framework for a room containing sound zones will
be introduced. This framework will be used later in the description of the sound
zone algorithms in Section 3.2.

The contents of this section are as follows. First, Section 3.1.1 develops a spatial
description of a room containing two zones and a loudspeaker array. Then, Sec-
tion 3.1.2 defines the objective of the sound zone algorithm formally as realizing a
desired target sound pressure at discrete points in the room. Finally, Section 3.1.3
discusses a suitable target sound pressure, which is used in the remainder of this
thesis.

3.1.1 Room Topology

A room R can be modeled as a closed subset of three dimensional space, R ⊂ R3.
The two non-overlapping zones A and B are contained within the room R, i.e.
A ⊂ R and B ⊂ R where A ∩ B = ∅. That is, there is no intersection between
zones.

In general, the room can contain any number of zones; however, this thesis focuses
on the two-zone case without loss of generality. In addition to the zones, the roomR
also contains NL loudspeakers, which are modeled as point sources. An example of
a possible room, loudspeakers, and pair of zones are visualized in Figure 3.3.

The sound zone algorithm aims to use the sound pressure generated by the loud-
speakers to realize a specified target sound pressure in the space described by zones
A and B. This is to be done in such a way that there is minimal interference be-
tween zones, meaning that target sound pressure intended for one zone should not
be audible in the other zones. Thus, allowing for multiple distinct audio experiences
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Figure 3.4: The previously introduced room R with zones A and B discretized.

in the room.

The sound field generated by loudspeakers can be controlled by specifying their
input signals. As such, the goal of the sound zone algorithm is to find loudspeaker
input signals so that specified target sound pressure is attained.

The rest of this section will focus on formalizing this notion mathematically.

3.1.2 Defining Target and Achieved Pressure

Currently, the zones are given as continuous regions in space. However, most sound
zone approaches will instead discretize the zones by sampling the continuous zones
A and B into so-called control points. The sound pressure is then controlled only
in these control points.

Thus, we discretize zones A and B into a total of Na and Nb control points respec-
tively. Let A and B denote the sets of the resulting control points contained within
zones A and B, respectively. Now let t(m)[n] denote the target sound pressure at
control point m in either A or B, i.e. m ∈ A ∪B.

The sound pressure produced by the loudspeakers can be controlled by specifying
their input signals. Let x(l)[n] ∈ RNx denote the loudspeaker input signal of length
Nx for the lth loudspeaker. For now, it is assumed that the loudspeaker input signals
are of finite length. In a later part of the thesis, a short-time formulation is given
that supports infinite length sequences.

As such, the goal of the sound zone algorithm can be restated as finding loudspeaker
inputs x(l)[n] such that the target sound pressure t(m)[n] is realized for all m ∈
A ∪B.

To do so, a relationship must be established between the loudspeaker inputs x(l)[n]
and the achieved sound pressure at control points m ∈ A ∪ B. This relationship
can be established by using a linear model based on room impulse responses (RIRs)
h(l,m)[n] ∈ RNh [29].
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The RIRs h(l,m)[n] determine the sound pressure at control point m due to play-
ing loudspeaker signal x(l)[n] from loudspeaker l. Mathematically, let p(l,m)[n] ∈
RNx+Nh−1 represent said sound pressure. It can be defined as follows [1]:

p(l,m)[n] =
(
h(l,m) ∗ x(l)

)
[n], (3.1)

Here, the ∗ operator is used to denote linear convolution. The achieved sound
pressure p(l,m)[n] only considers the contribution of loudspeaker l at reproduction
point m. Let p(m)[n] ∈ RNx+Nh−1 denote the total achieved sound pressure due
to all NL loudspeakers, which can be expressed as the sum over all contributions
p(l,m)[n] as follows:

p(m)[n] =

NL−1∑
l=0

(
h(l,m) ∗ x(l)

)
[n]. (3.2)

With the data model completed, the goal of the sound zone algorithm can be again
restated formally. Namely, to find the loudspeaker input signals x(l)[n] such that
the achieved sound pressure p(m)[n] attains the target sound pressure t(m)[n] for all
control points m ∈ A ∪B.

3.1.3 Choice of Target Pressure

The target sound pressure t(m)[n] describes the desired content for a specific control
point m. So far, the choice of target sound pressure t(m)[n] has been kept gen-
eral. In this section, a choice to properly define the target pressure is given and
motivated.

Assume that the users of the sound zone system have selected desired playback
audio signals sA[n] ∈ RNx and sB[n] ∈ RNx that they wish to hear in zone A and
B respectively. In order to accommodate the wishes of the user, the target sound
pressure is chosen as follows:

t(m)[n] =

NL∑
l=0

(
h(l,m) ∗ sA

)
[n] ∀m ∈ A,

t(m)[n] =

NL∑
l=0

(
h(l,m) ∗ sB

)
[n] ∀m ∈ B.

(3.3)

This choice for the target pressure can be understood as the sound pressure that
arises in a particular zone when using the loudspeaker array to play only the desired
audio in that zone. For example, when in zone m ∈ A, the target sound pressure
is set equal to the sound pressure corresponding to what arises when playing only
sA[n] from the loudspeaker array.

The motivation for choosing this target is that it is physically attainable in each
zone separately with the given loudspeakers, their positions, and the room acous-
tics.
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3.2 Review of Sound Zone Approaches

The two main approaches in sound zone literature are “pressure matching” (PM)
and “acoustic contrast control” (ACC). Pressure matching is used as the main
inspiration for the perceptual sound zone framework proposed in Section 3.3, which
is in turn used to propose perceptual sound zone algorithms in Chapter 4. A
description of acoustic contrast control is included for completeness. This section
introduces and describes both approaches using the previously derived data model
to sketch their mathematical properties.

Classically, the sound zone problem is divided up into subproblems as described
in the introduction of this chapter. The resulting loudspeaker input signals x(l)[n]
are determined for a single bright-dark zone pair: the loudspeaker input signals
are found such that the target audio is achieved in the bright zone, while leakage
is minimized in the dark zone. If a solution for multiple zones is desired, multiple
problems must be solved independently and their resulting loudspeaker input signals
combined [1].

There is another approach, however. In a multi-zone approach, the loudspeaker
input signals are instead determined jointly for all zones, rather than decomposing
into bright-dark zone pairs.

A multi-zone approach is taken in this thesis, as it is found to be more general. For
simplicity, but without loss of generality, this thesis limits the number of zones to
two. The approach is, however, generalizable to any multiplicity of zones.

In a two zone multi-zone approach, the loudspeaker input signals x(l)[n] are decom-
posed into two parts as follows:

x(l)[n] = x
(l)
A [n] + x

(l)
B [n]. (3.4)

Here, x
(l)
A [n] and x

(l)
B [n] are the parts of the loudspeaker input signal responsible for

reproducing the target sound pressure in zone A and B respectively.

Through this decomposition, it is possible to consider the sound pressure that arises
at a specified control point due to the separate loudspeaker input signals:

p
(m)
Z [n] =

NL∑
l=0

(
h(l,m) ∗ x(l)

Z

)
[n], (3.5)

where Z ∈ (A, B) represents either zones. Here, p
(m)
A [n] and p

(m)
B [n] can be un-

derstood to be the achieved sound pressure that arises due to playing loudspeaker

input signals x
(l)
A [n] and x

(l)
B [n] respectively.

The total achieved sound pressure at control point m is then given by the addition
of the two achieved sound pressures:

p(m)[n] = p
(m)
A [n] + p

(m)
B [n]. (3.6)

This decomposition is used to describe a multi-zone variant of both a pressure
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matching approach in Section 3.2.1, and acoustic contrast control approach in Sec-
tion 3.2.2.

3.2.1 Description of Pressure Matching

The “pressure matching” (PM) approach is widely used in the literature to solve the
sound zone problem [1, 2]. In this section, a multi-zone pressure matching algorithm
is derived using the data model given in Section 3.1.

In pressure matching approaches, one attempts to design suitable loudspeaker input
signals in such a way that the resulting sound pressure in the zone matches the
specified target sound pressure for that zone. Simultaneously the sound pressure
that results in other zones as interference or cross-talk due to reproducing the target
in the bright zone is minimized [1, 30].

This goal can be stated formally as choosing x
(l)
A [n] such that the resulting achieved

pressure p
(m)
A [n] attains the target sound pressure t(m)[n] in all control points m ∈ A.

At the same time, however, p
(m)
A [n] should result in minimal sound pressure in all

control points m ∈ B. Any sound pressure resulting from x
(l)
A [n] in zone B can be

understood as leakage or cross-talk between the zones. Similar arguments can be

given for x
(l)
B [n].

An optimization problem that achieves this goal is formulated as follows:

arg min
x
(l)
A [n], x

(l)
B [n] ∀ l

∑
m∈A

∣∣∣∣∣∣p(m)
A [n]− t(m)[n]

∣∣∣∣∣∣2
2

+
∑
m∈A

∣∣∣∣∣∣p(m)
B [n]

∣∣∣∣∣∣2
2

+

∑
m∈B

∣∣∣∣∣∣p(m)
B [n]− t(m)[n]

∣∣∣∣∣∣2
2

+
∑
m∈B

∣∣∣∣∣∣p(m)
A [n]

∣∣∣∣∣∣2
2
,

(3.7)

where the || · ||22 operator denotes the squared L2-norm. In this case, the norm is
taken over the time-domain sequence indexed by n.

To further understand the optimization problem, consider the following defini-
tions:

RE
(m)
Z =

∣∣∣∣∣∣p(m)
Z [n]− t(m)[n]

∣∣∣∣∣∣2
2

∀ m ∈ Z, (3.8)

LE
(m)
Z =

∣∣∣∣∣∣p(m)
Z [n]

∣∣∣∣∣∣2
2

∀ m /∈ Z. (3.9)

With the following interpretations:

• RE
(m)
Z is the reproduction error for zone Z ∈ (A, B) for control point m ∈ Z.

This error corresponds to how well the achieved sound pressure p
(m)
Z [n] matches

the target sound pressure t(m)[n] for a control point in the bright zone.

• LE
(m)
Z is the leakage error in zone Z ∈ (A, B) for control point m /∈ Z. This

error can be understood as the total sound energy that “leaks” into control
point m in zones other than Z when attempting to reproduce the target sound
pressure t(m)[n] in zone Z. This can be also be understood as the “interference”
or “cross-talk” between zones.
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Using these definition we can rewrite the optimization problem:

arg min
x
(l)
A [n], x

(l)
B [n] ∀ l

∑
m∈A

RE
(m)
A +

∑
m∈B

LE
(m)
A +

∑
m∈B

RE
(m)
B +

∑
m∈A

LE
(m)
B . (3.10)

From this, it becomes clear that this approach results in a trade-off between mini-

mizing the reproduction errors RE
(m)
Z and leakage errors LE

(m)
Z .

Some pressure matching approaches attempt to control this trade-off by introducing
weights for the different error terms, or by adding constraints. Choosing constraints
can, however, be challenging as the squared L2 pressure error does not always
correlate well with how the error is perceived by humans.

3.2.2 Description of Acoustic Contrast Control

The “acoustic contrast control” (ACC) method is another widely used sound zone
approach from literature. The ACC approach attempts to maximize the acoustic
contrast between the bright zone and the dark zone. Acoustic contrast is the ratio
of the total sound energy of the bright and dark zones. Essentially, the goal is
to maximize the difference in sound pressure level between the bright and dark
zones.

In this section, a multi-zone ACC algorithm is described. As the previously de-
scribed data model is in the time domain, this approach will take inspiration from a
time-domain approach found in literature known as the broadband acoustic contrast
control (BACC) approach [31, 32, 2].

In contrast to the multi-zone PM approach, the multi-zone ACC approach does

not optimize directly over the loudspeaker input signals x
(l)
A [n] and x

(l)
B [n]. Instead,

it indirectly controls the loudspeaker input signals by optimizing over FIR filter

coefficients w
(l)
A [n] ∈ RNw and w

(l)
B [n] ∈ RNw . These filters are applied to the

desired playback signals s
(l)
A and s

(l)
B respectively to form the final loudspeaker input

signals.

This relationship between the loudspeaker input signals and the filter coefficients is
thus given as follows:

x
(l)
Z [n] =

(
w

(l)
Z ∗ sZ

)
[n]. (3.11)

This definition also relates the filter coefficients to the resulting sound pressure
through Equation (3.2).

As mentioned, the goal of the ACC approach is to maximize the acoustic contrast
between bright and dark zones, which is defined as the ratio between the sound
energy in the bright and dark zones. The total sound energy in a zone will be
defined as the sum of squares of the sound pressure in a control point. As such, the
acoustic contrast ACZ for a zone Z can be defined as follows:

ACZ =

∑
m∈Z

∣∣∣∣∣∣p(m)
Z [n]

∣∣∣∣∣∣2
2∑

m/∈Z

∣∣∣∣∣∣p(m)
Z [n]

∣∣∣∣∣∣2
2

. (3.12)
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In an ACC approach, the goal is to maximize the total acoustic contrast. Thus,
consider the following optimization problem:

arg max
w

(l)
A [n], w

(l)
B [n]∀ l

ACA + ACB. (3.13)

As mentioned, the optimization is performed over the loudspeaker filter coefficients
rather than over the loudspeaker input signals.

Acoustic contrast control is discussed mainly for completion as an alternative to the
pressure matching approach. As is discussed in Section 3.3, pressure matching is
the main inspiration for the proposed perceptual sound zone approach used in the
proposed perceptual sound zone algorithm.
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3.3 Proposal of Perceptual Sound Zone Framework

This section proposes and motivates a perceptual sound zone framework that makes
use of the “Par distortion detectability” discussed in Chapter 2 to construct sound
zones in a manner inspired by the “pressure matching” approach discussed in Sec-
tion 3.2. This perceptual sound zone framework is used to propose perceptual sound
zone algorithms in Chapter 4.

As is motived by Section 2.2, the Par distortion detectability is the perceptual model
to be used in the perceptual sound zone algorithm. Recall from Section 2.3 that the
detectability D(x[n], ε[n]) quantifies how detectable a disturbance ε[n] ∈ RNx is in
presence of a masking signal x[n] ∈ RNx . Note that the Par distortion detectability
assumes that the time-scale of its inputs are short, in the order of 20 to 200 ms.

It is noted in Section 2.3.3 that the Par distortion detectability measure is a convex
function of the disturbance signal ε[n] when the masking signal is held constant.
As such, one approach is to specify a sound zone algorithm optimizes over this
disturbance signal in some way. This is be done by adopting a model for the
disturbance ε[n] and the masking signal x[n].

One natural choice for the disturbance signal are the sound pressure errors from the
pressure matching approach.

As discussed in Section 3.2.1, pressure matching constructs sound zones by mini-

mizing the sum of the reproduction error in the bright zone RE
(m)
Z and the leakage

to the dark zone LE
(m)
Z . The original definitions of these equations are given by

Equations (3.8) and (3.9). Their definition is repeated for the convenience of the
reader:

RE
(m)
Z =

∣∣∣∣∣∣p(m)
Z [n]− t(m)[n]

∣∣∣∣∣∣2
2

∀ m ∈ Z, (3.14)

LE
(m)
Z =

∣∣∣∣∣∣p(m)
Z [n]

∣∣∣∣∣∣2
2

∀ m /∈ Z. (3.15)

Consider modeling the errors from the pressure matching approach as the distur-

bances ε[n]. To this end, define the reproduction error detectability RED
(m)
Z and

the leakage error detectability LED
(m)
Z :

RED
(m)
Z = D(t(m)[n], p

(m)
Z [n]− t(m)[n]) ∀ m ∈ Z (3.16)

LED
(m)
Z = D(t(m)[n], p

(m)
Z [n]) ∀ m /∈ Z (3.17)

The reproduction error detectability and the leakage error detectability are building
blocks that form a framework with which perceptual sound zone algorithms can be
created. In these definitions, both the masking signal x[n] and the disturbance
signal ε[n] of the disturbance detectability D(x[n], ε[n]) are modeled:

• The reproduction error detectability RED
(m)
Z models the distortion signal as the

reproduction error, which is defined as the the deviation of the achieved sound

pressure in the bright zone from the target sound pressure, i.e p
(m)
Z [n]− t(m)[n].
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As such, the reproduction error detectability can be understood as the de-
tectability of the reproduction error in the presence of the target sound pressure
for that control point m.

• The leakage error detectability LED
(m)
Z models the distortion signals as the

leakage error, which is defined as the achieved sound pressure in the dark zone,

i.e., p
(m)
Z [n].

The leakage error detectability can thus be understood as the detectability of
the achieved dark zone pressure, or interference, in the presence of the target
sound pressure for that control point m.

• For both reproduction error detectability RED
(m)
Z and the leakage error de-

tectability LED
(m)
Z the masking signal x[n] is modeled as the target sound

pressure for the given control point m, i.e t(m)[n].

As a result, the masking properties of the target sound pressures are used for
both the reproduction error detectability and the leakage error detectability.

The expected behavior of minimizing the reproduction error detectability and the
leakage error detectability is that the reconstruction and leakage errors are shaped
in such a way that they are masked to a degree by the target sound pressure. As a
result, the errors should become minimally detectable.

Note that using the target sound pressure as a masking signal is an approximation:
Generally, it cannot be assumed that the achieved sound algorithm exactly matches
the target sound pressure perfectly, as the target is not always attainable for the
given room, zones, and set of loudspeakers. In the ideal case, the masking properties
of the total achieved sound pressure would be used instead. However, this quantity
depends on the optimizer. Adopting the total sound pressure in place of the target
sound pressure for the masking signal results in a non-convex problem. As stated
in Section 2.3.3, the detectability is only convex if the masking signal is constant.
As such, the masking effects of the achieved pressure are approximated by those of
the target sound pressure.

Note also that the detectability is proposed to operate on short time-frequency
domain segments with a time resolution of 20 to 200 milliseconds. As such, the
existing data model and pressure matching approach must be changed to operate
in a short time-frequency domain fashion. This is done in Section 4.1.

This framework of error detectabilities is found to be a promising and natural way
of creating sound zone algorithms directly through the Par disturbance detectability
and is used to state two perceptual sound zone algorithms in Chapter 4.

Using the ACC approach to formulate perceptual sound zone algorithms is not
explored further in this work but is left as promising future work.
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Chapter 4

Perceptual Sound Zone Algorithm
Proposal and Implementation

In Chapter 2 the Par detectability is selected as the most promising perceptual
model for use in a perceptual sound zone algorithm. Next, in Chapter 3 various
sound zone algorithms are discussed, ultimately leading to the proposal of a percep-
tual sound zone framework in Section 3.3 that uses the Par detectability measure
in the creation of sound zones.

This chapter uses the proposed perceptual sound zone framework to propose and
implement two perceptual sound zone algorithms.

Chapter Structure

This chapter is structured as follows.

• First, Section 4.1 discusses the reformulation of the time-domain pressure
matching approach given in Section 3.2 to a short-time frequency-domain pres-
sure matching approach. This is necessary for the perceptual framework dis-
cussed in Section 3.3 to be implementable.

• Next, Section 4.2 discusses the framework implementation of the framework
proposed in Section 3.3. This is then subsequently used to formulate two
perceptual sound zone algorithms.
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4.1 Proposal of Short-Time Frequency-Domain Pressure
Matching

In Section 3.3 a perceptual sound zone framework is proposed based on the pressure
matching approach discussed in Section 3.2. In this framework, the Par detectabil-
ity measure quantifies the perceptual cost of sound pressure errors. In doing so,

Section 3.2 introduces the concepts of reproduction error detectability RED
(m)
Z and

the leakage error detectability LED
(m)
Z per control point m.

As noted, the original pressure matching approach from Section 3.2 operates on full-
length input sequences in the time domain. The detectability, however, operates on
short-time segments of 20 to 200 milliseconds in the frequency domain. To define
the reproduction error detectability and the leakage error detectability, this section
proposes a short-time frequency-domain pressure matching approach.

First in Section 4.1.1 the existing pressure matching approach is reformulated to op-
erate on short-time segments through a “block-based” approach. Next, Section 4.1.2
adapts the short-time pressure matching algorithm to operate in the frequency do-
main.

4.1.1 Short-Time Pressure Matching

In order to operate on short-time segments, all quantities introduced in the data
model from Section 3.1 are converted to their short-time equivalent representations.
This is done by expressing quantities using overlapping blocks containing samples
of these quantities.

Here, the blocks are each of size Nw and overlap Nw −H samples. The constant H
denotes the hop size, the number of samples between each successive block.

First, the short-time equivalent representations of the desired playback signal sZ [n]

and the loudspeaker input signals x
(l)
Z [n] for zone Z and loudspeaker l are dis-

cussed.

In order to formulate their short-time representations, sZ [n] and x
(l)
Z [n] are split up

into multiple overlapping blocks by using shifted windows w[n− kH].

The window w[n] ∈ RH is a non-causal window with support −Nw + 1 ≤ n ≤ 0,
and is zero otherwise. Here, w[n] is chosen such that it complies with the Constant
Overlap Add (COLA) condition for a given hop size H. The COLA condition
requires that the sum of all H-shifted windows add to unity for all samples n. It is
given as follows:

∞∑
k=−∞

w[n− kH] = 1 ∀n. (4.1)

Using the windows as defined above, consider the following representation of sZ [n],
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sZ [n] = sZ [n]
∞∑

k=−∞

w[n− kH]

=
∞∑

k=−∞

s̃Z,k[n]w[n− kH],

(4.2)

and of x
(l)
Z [n],

x
(l)
Z [n] = x

(l)
Z [n]

∞∑
k=−∞

w[n− kH]

=
∞∑

k=−∞

x̃
(l)
Z,k[n]w[n− kH].

(4.3)

Where s̃Z,k[n] and x̃
(l)
Z,k[n] represent the content of the kth blocks of the playback

signal sZ [n] and loudspeaker input signals x
(l)
Z [n].

As such, s̃Z,k[n] = sZ [n] and x̃
(l)
Z,k[n] = x

(l)
Z,k[n] for −Nw+1+kH ≤ n ≤ kH and zero

for all other samples n. One interpretation is that the windows decimate the signal
into segments of size Nw, which can be reconstructed perfectly through addition
due to the COLA condition.

One way of interpreting the equations above is as a projection of sZ [n] and x
(l)
Z [n] on

a basis of frames spanned by shifted overlapping windows w[n− kH]. Here, s̃Z,k[n]

and x̃
(l)
Z,k[n] can be thought of as the coefficients for the basis functions resulting

from the projection.

Let s̃Z [n, µ] and x̃
(l)
Z [n, µ] represent the desired playback signal and the loudspeaker

input signals with contributions up to and including the µthblock. This can be
expressed as follows:

s̃Z [n, µ] =

µ∑
k=−∞

s̃Z,k[n]w[n− kH], (4.4)

x̃
(l)
Z [n, µ] =

µ∑
k=−∞

x̃
(l)
Z,k[n]w[n− kH]. (4.5)

This form will converge to the actual desired playback signal as µ → ∞. As such,

s̃Z [n,∞] = sZ [n] and x̃
(l)
Z [n,∞] = x

(l)
Z [n].

This representation is beneficial, as it can be used to show that the x̃
(l)
Z [n, µ] can be

computed recursively:

x̃
(l)
Z [n, µ] = x̃

(l)
Z,µ[n]w[n− µH] +

µ−1∑
k=−∞

x̃
(l)
Z,k[n]w[n− kH]

= x̃
(l)
Z,µ[n]w[n− µH] + x̃

(l)
Z [n, µ− 1].

(4.6)
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As the newest block depends on the previous blocks. This representation shows

that x
(l)
Z [n] can be computed block-by-block: the next block can be computed using

the preceding block.

With the block-based equivalents of the desired playback signal s̃Z [n, µ] and the

loudspeaker input signals x̃
(l)
Z [n, µ] defined, the block-based equivalents of the target

and achieved sound pressure t̃Z [n, µ] and p̃
(m)
Z [n, µ] can be computed:

• The block-based target sound pressure t̃(m)[n, µ] can be defined by simply sub-
stituting the definition for the block-based desired playback signal s̃Z [n, µ] into
the definition of the target pressure given by Equation (3.3):

t̃(m)[n, µ] =

NL−1∑
l=0

(
h(l,m) ∗ s̃Z [µ]

)
[n]

=

NL−1∑
l=0

µ∑
k=−∞

(
h(l,m) ∗ s̃Z,kwk

)
[n]

=

NL−1∑
l=0

(
h(l,m) ∗ s̃Z,µwµ

)
[n] + t̃(m)[n, µ− 1].

(4.7)

Here, wk[n] is defined to be equal to w[n−kH] and is introduced for notational
convenience. The definition above holds for all points m ∈ Z, i.e., the points
contained in zone Z.

As can be seen, the block-based target sound pressure for the block µ can be
computed recursively by adding the contribution of the newest block of s̃Z,µ[n]
to the target sound pressure of the previous block.

• The block-based resulting sound pressure p̃
(m)
Z [n, µ] can be defined by sim-

ply substituting the definition for the block-based loudspeaker input signals

x̃
(l)
Z [n, µ] into the definition of the resulting pressure given by Equation (3.2).

This results in the following:

p̃
(m)
Z [n, µ] =

NL−1∑
l=0

(
h(l,m) ∗ x̃(l)

Z [µ]
)

[n]

=

NL−1∑
l=0

µ∑
k=−∞

(
h(l,m) ∗ x̃(l)

Z,kwk

)
[n]

=

NL−1∑
l=0

(
h(l,m) ∗ x̃(l)

Z,µwµ

)
[n] + p̃

(m)
Z [n, µ− 1].

(4.8)

The definition above again holds for all points m ∈ Z.

As can be seen, the block-based resulting sound pressure for the block µ can
also be computed recursively.

With this, all quantities required for the block-based formulation of the pressure
matching approach are defined.
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It is shown in Equation (4.8) and Equation (4.7) that all quantities can be computed
recursively.

This is used in the block-based pressure matching approach by computing the blocks

of the loudspeaker input signal x
(l)
Z [n] one by one. As such, the kth loudspeaker

input signal coefficient x̃
(l)
Z,µ[n] is computed such that the resulting resulting sound

pressure p̃
(m)
Z [n, µ] best matches the target sound pressure t̃(m)[n, µ].

Note that in this approach, only the newest loudspeaker coefficients x̃
(l)
Z,µ are being

controlled. The previous coefficients x̃
(l)
Z,k[n] for−∞ ≤ k ≤ µ−1 are held fixed.

The block-based optimization problem can be found by replacing all quantities in
the previously derived optimization problem with their block-based counterparts.
The problem is given as follows:

arg min
x̃
(l)
A,µ[n], x̃

(l)
B,µ[n] ∀ l

∑
m∈A

∣∣∣∣∣∣p̃(m)
A [n, µ]− t̃(m)

µ [n, µ]
∣∣∣∣∣∣2

2
+
∑
m∈A

∣∣∣∣∣∣p̃(m)
B [n, µ]

∣∣∣∣∣∣2
2

+

∑
m∈B

∣∣∣∣∣∣p̃(m)
B [n, µ]− t̃(m)

µ [n, µ]
∣∣∣∣∣∣2

2
+
∑
m∈B

∣∣∣∣∣∣p̃(m)
A [n, µ]

∣∣∣∣∣∣2
2
.

(4.9)

Note that this problem implicitly contains the target sound pressure and resulting
sound pressure of the previous blocks −∞ ≤ k ≤ µ− 1 due to the aforementioned
recursive definitions. As a result, the history of what has been transmitted by the
loudspeaker previously is included in the optimization.

This is beneficial, as due to overlap, this allows block µ to potentially improve the
results of previous blocks. However, the loudspeaker input signals of the current
block µ can only affect so many previous blocks (depending on the overlap). As
such, to reduce the complexity of the optimization without affecting the results,
one may choose to truncate the number of previous blocks −∞ ≤ k ≤ µ− 1 in the
history of the optimization.

The problem above is solved recursively for all loudspeaker input signal coefficients

x̃
(l)
A,µ[n] and x̃

(l)
B,µ[n]. The final loudspeaker input signals x

(l)
Z [n] can then be found

by means of Equation (4.3).

4.1.2 Short-Time Frequency-Domain Pressure Matching

This section will adjust the block-based data model equivalent frequency-domain
formulation to propose a short-time frequency-domain pressure matching algorithm.
This is done by first introducing a transformation relating the time and frequency
domain quantities.

A suitable transform is the discrete Fourier transform (DFT). However, it is im-
portant to take some precautions before applying the DFT directly. As shown in
Equation (3.2), the computation of the sound pressures used in the optimization
problem introduced previously involves taking the linear convolution of the loud-
speaker input signals with the room impulse responses.
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Time-domain circular convolution can be computed in the frequency domain
through the Hadamard product. Time-domain circular convolution coincides with
time-domain linear convolution only if the two operands are zero-padded sufficiently.
To be specific, both operands need to be zero-padded to the length of the resulting
linear convolution.

As such, the frequency domain transform requires this zero padding to be built-
in. The convolutions described in the previous chapter are between the window
coefficients of size Nw and the room impulse responses of size Nh. Thus, both must
be zero-padded to convolution length Nw + Nh − 1 before going to the frequency
domain.

Let x[n] ∈ RNw and X[k] ∈ CNw+Nh−1 denote the time- and frequency-domain
representations of an arbitrary sequence. A suitable transform is given by the
following Nw +Nh − 1 point DFT:

X[k] =
Nw−1∑
n=0

x[n] exp

( −j2πkn
Nw +Nh − 1

)
. (4.10)

Converting the previously introduced block-based pressure matching to a fre-
quency domain equivalent version essentially involves converting the sound pres-

sures p̃
(m)
Z [n, µ] and t̃(m)[n, µ] to their frequency domain counterparts, which are

denoted by P̃
(m)
Z,µ [k] ∈ CNw+Nh−1 and T̃

(m)
µ [k] ∈ CNw+Nh−1 respectively.

This is done as follows:

T̃ (m)[k, µ] =

NL∑
l=0

H(l,m)[k]S̃Z,µ[k], (4.11)

P̃
(m)
Z [k, µ] =

NL∑
l=0

H(l,m)[k]X̃
(l)
Z,µ[k]. (4.12)

Here, H(l,m)[k] ∈ CNw+Nh−1 is the transformed version of the room impulse re-

sponses. Furthermore, S̃Z,µ[k] ∈ CNw+Nh−1 and X̃
(l)
Z,µ[k] ∈ CNw+Nh−1 are the fre-

quency domain versions of the desired playback signal and the loudspeaker input
signals, which are defined as follows:

S̃Z,µ[k] =

µH∑
n=µH−Nw+1

[
µ∑

k=−∞

s̃Z,µ[n]w[n− kH]

]
exp

(
−j2πk(n−µH+Nw−1)

Nw+Nh−1

)
, (4.13)

X̃
(l)
Z,µ[k] =

µH∑
n=µH−Nw+1

[
µ∑

k=−∞

x̃
(l)
Z,µ[n]w[n− kH]

]
exp

(
−j2πk(n−µH+Nw−1)

Nw+Nh−1

)
. (4.14)

This definition takes the short-time Fourier transformation of block µ of all con-
tributions to the desired playback signal and the loudspeaker input signals up to
and including block µ. As such, the history formed by the previous blocks is also
taken into account. Note that the window is implicitly included in the transformed
quantities. This is done for ease of notation.
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Using the previously derived quantities, it is possible express the frequency domain
version of the short-time pressure matching approach as follows:

arg min
x̃
(l)
A,µ[n], x̃

(l)
B,µ[n] ∀ l

∑
m∈A

∣∣∣∣∣∣P̃ (m)
A [k, µ]− T̃ (m)[k, µ]

∣∣∣∣∣∣2
2

+
∑
m∈A

∣∣∣∣∣∣P̃ (m)
B [k, µ]

∣∣∣∣∣∣2
2

+

∑
m∈B

∣∣∣∣∣∣P̃ (m)
B [k, µ]− T̃ (m)[k, µ]

∣∣∣∣∣∣2
2

+
∑
m∈B

∣∣∣∣∣∣P̃ (m)
A [k, µ]

∣∣∣∣∣∣2
2

(4.15)

Note also how the optimization is still performed over the time domain loudspeaker

input signals x̃
(l)
A,µ[n] and x̃

(l)
B,µ[n]. This was done to constrain the loudspeaker input

signal coefficient to size Nw, as that is an assumption made by the frame-based
processing.

In principle, this introduces more complexity than solving directly over the fre-

quency domain loudspeaker input coefficient X̃
(l)
Z,µ[k]. This, however, introduces

issues as it requires the truncation of the time-domain version to the first Nw sam-
ples.

Naively truncating Nw this way introduced artifacts. In experiments in which this
approach is attempted, the time-domain representation of the resulting frequency-
domain loudspeaker input signals results in significant energy contained in the last
Nh − 1 samples. If truncated, a significant portion of the signal energy would be
disregarded, which serves as a possible explanation for the artifacts.

However, due to the computational benefits, formulating a frequency domain ap-
proach that minimizes the impact of or prevents these artifacts is found to be
promising future work.
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4.2 Proposal of Perceptual Pressure Matching
Algorithms

Previously, Section 3.3 noted that the pressure matching approach could be formu-
lated using the detectability. In this section, this approach is used to propose two
sound zone algorithms.

In the proposed approach, rather than optimizing the sum reproduction errors

RE
(m)
Z and leakage errors LE

(m)
Z , it is proposed to instead use the reproduction

error detectability RED
(m)
Z and the leakage error detectability LED

(m)
Z respectively.

These can be understood to be perceptual alternatives to RE
(m)
Z and LE

(m)
Z .

In Section 3.3 the description of reproduction error detectability RED
(m)
Z and the

leakage error detectability LED
(m)
Z is given in terms of full-length input sequences.

As noted, this is inaccurate as the detectability operates on a short-time scale and
is only done this way to convey the concept.

Henceforth, using the concepts introduced in Section 4.1, let RED
(m)
Z [µ] and

LED
(m)
Z [µ] denote the reproduction error detectability and leakage error detectabil-

ity corresponding to block µ in control point m.

To define these error detectability quantities, recall that detectability is defined as
follows:

D(x[n], ε[n]) = ||Wx[k]E [k]||22 (4.16)

Using this definition alongside the short-time frequency domain definitions given in

Section 4.1, the definition of the reproduction error detectability RED
(m)
Z and the

leakage error detectability LED
(m)
Z can be given as follows:

RED
(m)
Z [µ] = D(t̃(m)[n, µ], p̃

(m)
Z [n, µ]− t̃(m)[n, µ])

=
∣∣∣∣∣∣Wt̃(m)[µ][k]

(
P̃

(m)
Z [k, µ]− T̃ (m)[k, µ]

)∣∣∣∣∣∣2
2
,

(4.17)

LED
(m)
Z [µ] = D(t̃(m)[n, µ], p̃

(m)
Z [n, µ])

=
∣∣∣∣∣∣Wt̃(m)[µ][k]

(
P̃

(m)
Z [k, µ]

)∣∣∣∣∣∣2
2
.

(4.18)

Here, Wt̃(m)[µ][k] can be understood as the perceptual weighting informed by the

masking properties of the frequency domain target t̃(m)[n, µ].

What follows is the proposal of two perceptual sound zone algorithms using the
proposed error detectabilities.

4.2.1 Proposal of Unconstrained Perceptual Pressure Matching

This section proposes an algorithm that minimizes the detectability of the total
error. This is similar to the pressure matching approach introduced in Section 3.2,
in which the total error is minimized.

40



Consider the following optimization problem:

arg min
x̃
(l)
A [n,µ], x̃

(l)
B [n,µ] ∀ l

∑
m∈A

RED
(m)
A [µ] +

∑
m∈B

LED
(m)
A [µ]+∑

m∈B

RED
(m)
B [µ] +

∑
m∈A

LED
(m)
B [µ].

(4.19)

The total detectability of the reproduction errors and the leakage errors is minimized
by optimizing over the block-based representations of the loudspeaker input signals

x̃
(l)
A [n, µ] and x̃

(l)
B [n, µ]. The expected behavior of this optimization problem is that

the sound pressure errors will be shaped in such a way that they are masked by the
target sound pressure.

4.2.2 Proposal of Constrained Perceptual Pressure Matching

The previously discussed approach minimizes the total detectability. In this section,
a perceptual sound zone algorithm is proposed that introduces constraints to the
problem.

The motivation for this approach is that it is hypothesized that the Par distortion de-
tectability has a consistent perceptual interpretation. As mentioned in Section 2.3,
a detectability of 1 will consistently imply “just noticeable” [7].

This makes choosing constraints for detectability easier than typical non-perceptual
pressure matching approaches. These approaches typically directly constrain the
sound pressure error, for which it is difficult to determine constraints [33] as the
sound pressure error does not have a consistent perceptual interpretation. As a
result, a sound pressure error constraint can lead to widely varying results percep-
tually.

This motivates the proposal of a perceptually constrained sound pressure approach.
In this approach, the reproduction error detectability will be constrained, while the
leakage error detectability will be minimized. To this end, the following optimization
problem is defined:

arg min
x̃
(l)
A [n,µ], x̃

(l)
B [n,µ] ∀ l

∑
m∈B

LED
(m)
A [µ] +

∑
m∈A

LED
(m)
B [µ],

subject to RED
(m)
A [µ] ≤ D0 ∀m ∈ A

RED
(m)
B [µ] ≤ D0 ∀m ∈ B.

(4.20)

Here, D0 is the maximum allowed detectability of the reproduction error per con-
trol point m. The intended effect of this constraint is limiting how detectable the
deviation of the achieved sound pressure is from the specified target. Effectively,
this allows for controlling the quality of the achieved sound pressure per control
point m. To the knowledge of the authors, this is a novelty.

It is also hypothesized that the constraint D0 allows for more control over the trade-
off between reproduction error detectability and leakage error detectability.
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It should be noted that constraining the leakage error detectability is also a good
choice. In doing so the algorithm is limited in the amount of interference that it
allows. A possible optimization problem that achieves this is defined as follows:

arg min
x̃
(l)
A [n,µ], x̃

(l)
B [n,µ] ∀ l

∑
m∈B

RED
(m)
A [µ] +

∑
m∈A

RED
(m)
B [µ],

subject to LED
(m)
B [µ] ≤ D0 ∀m ∈ A

LED
(m)
A [µ] ≤ D0 ∀m ∈ B.

(4.21)

This problem is not pursued any further in this thesis. Constraining the detectabil-
ity of the leakage error is, however, found to be promising future work, which is
discussed further in Chapter 6.
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Chapter 5

Evaluation of Proposed Perceptual
Sound Zone Algorithms

In the Chapter 4, two perceptual sound zone algorithms are proposed based on the
proposed perceptual sound zone framework given in Section 3.3. This chapter per-
forms an evaluation of the proposed perceptual algorithms in order to determine the
benefits, if any, of including perceptual information in the proposed fashion.

This is done by comparing the proposed algorithms with a reference algorithm.

Chapter Structure

In order to achieve this goal, this chapter is structured as follows:

• This chapter begins with a description of the evaluation methodology in Sec-
tion 5.1, describing the experiments and the measures used in the subsequent
evaluation.

• Section 5.2 then presents and discusses the results of the described experiments.
The proposed algorithms are compared to a reference algorithm through vari-
ous perceptual measures in order to determine their relative performance.
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Figure 5.1: A birds-eye view of a square 5 by 5 meter room used in the simulations for the
evaluation of the algorithms. Two zones each consisting of two control points are depicted in blue
and red. The control points are numbered for ease of reference. The four loudspeakers are placed
in the corners of the room.

5.1 Evaluation Methodology

This section discusses the general approach for evaluation of the perceptual sound
zone algorithms proposed in Section 4.2.1 and Section 4.2.2. All algorithms will be
evaluated on the basis of simulations. As all derived algorithms are computationally
intensive, many of the parameter considerations for the simulations are chosen such
that the computational load is kept feasible.

For the evaluation, the constrained- and unconstrained perceptual pressure match-
ing approaches are compared to the short-time frequency-domain pressure matching
approach given in Section 4.1 by Equation (4.15).

5.1.1 Simulation Configuration

All sound zone algorithms are evaluated in a simulated square room of 5 by 5
meters, with a ceiling height of 3.4 meters. There are two zones, each consisting
of two control points. In order to obtain a sufficiently challenging problem, the
zones are placed in close proximity to each other, with the two closest points being
0.5 meters apart. This is important, as a trivial problem makes it difficult to
highlight the differences in performance between the perceptual and non-perceptual
approaches.

The room contains four loudspeakers placed in the corners of the room at the
height of 1.2 meters. Omnidirectional loudspeakers, which radiate energy equally
in all directions [29], are used. An image depicting the entire setup is given in
Figure 5.1.

In order to synthesize room impulse responses used to relate the loudspeaker inputs
and the resulting sound pressure in the control points, the image source method [34]
is used, specifically, the Habets implementation [29].

For reasons of computational complexity, the simulated room impulse responses are
limited to reverberation times of at most 200 milliseconds. The definition of the
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reverberation time is the time required for the intensity of reflections to reduce 60
dB relative to the direct path sound pressure [29]. To put the reverberation time
used in the experiment into context, it has been found in an investigation into the
reverberation time of furnished rooms that similarly sized rooms have an average
maximal reverberation time of 720 milliseconds [35].

To define the target sound pressure, content must be selected for the two zones.
For this evaluation, English speech content is used. The motivation for this is
that the objective speech quality measures described in Chapter 2 are found to be
more robust than the discussed general audio quality measures. Another practical
reason is that many general audio quality measures have little to no free and openly
available implementations, whereas the speech measures do.

The speech signals are downsampled to 8000 Hz. The motivation for this is that it is
computationally intensive to run the algorithms at a higher sampling rate. Another
motivation is that the majority of the speech energy is contained between 150 and
4000 Hz [36].

In total, a dataset of 4 loudness-matched speech signals is used for evaluation. For
each experiment, one speech signal is assigned to each zone. All possible combina-
tions of the speech signals are formed, resulting in a total of 12 possible configura-
tions. However, due to the symmetry of the loudspeaker, room, and zones given by
Figure 5.1 this simplifies to a total of 6 configurations.

5.1.2 Simulation Evaluation Measures

This section introduces the measures that are used to evaluate the simulation results
of the reference and perceptual algorithms.

The perceptual measures PESQ, STOI, SIIB, and Distraction from the literature
review discussed in Section 2.1 is used for the evaluation. In addition to these
perceptual measures, two traditional physical measures, namely the “normalized
mean square error” (NMSE) and the “acoustic contrast” (AC) in terms of sound
pressure is used in the evaluation of sound zone algorithms [37] are also used.

The motivation for including physical measures is to test the hypothesis that, while
typically outperforming in terms of perceptual measures, the perceptual sound zone
algorithms likely do not outperform the reference sound zone algorithm in terms of
physical measures. The hypothesis for this is that the reference pressure matching
approach optimizes over a physical error measure.

A brief summary is given of the outputs and inputs of the sound zone algorithm is
given below. These serve as the inputs to the evaluation measures.

• Target Sound Pressure t(m):
The desired sound pressure per control point m, defined by the speech signals
corresponding to the zone Z the control point is in.

• Achieved Sound Pressure p
(m)
Z :

The sound pressure is achieved by the algorithm at control point m for the
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zone Z. This sound pressure has two different interpretations, depending on
the control point under consideration.

– Achieved Bright Zone Sound Pressure for Zone Z:
Whenm ∈ Z, the achieved sound pressure is the achieved approximation of
the target sound pressure t(m) for control point m. This can be understood
as the approximation of the target sound pressure for a control point m,
sans leakage or interference.

– Achieved Dark Zone Sound Pressure for Zone Z:
When m /∈ Z, the achieved sound pressure represents the sound pressure
that arises in other zones due to reproducing the bright zone for zone Z.
It can be understood as the leakage or interference in other zones due to
reproducing zone Z.

• Total Achieved Sound Pressure
∑
Z p

(m)
Z :

The sound pressure in a control point m due to contributions of all zones Z.
This represents the sound pressure that a user of the sound zone system would
experience, and thus it contains both the approximation of the target sound
pressure and the interference.

For more information on these quantities, the reader is referred to Section 3.1, where
they are introduced. What follows is a description of various categories of evaluation
measures.

5.1.2.1 Perceptual Quality Measures

The first category of measures that are discussed are perceptual measures that
estimate the perceived quality of speech audio.

One of the metrics that is used is the Perceptual Evaluation of Speech Quality
(PESQ). As described in Section 2.1.1, PESQ is a metric that grades the quality of
a degraded speech signal with respect to a reference speech signal. The resulting
quality grade will be between 0 and 5, where 5 is the highest obtainable grade.

Another set of metrics that will be used are two speech intelligibility metrics: the
Short-Time Objective Intelligibility (STOI) and the Speech Intelligibility in Bits
(SIIB). STOI provides an intelligibility score between 0 and 1, where 1 is the highest
score. SIIB instead scores the intelligibility with an information rate given in bits/s,
lower-bounded by 0 bits/s. Maximum intelligibility corresponds to a rate of about
150 bits/s [17].

All perceptual measures evaluate the quality of a “degraded” input stimuli with
respect to a ”reference” stimuli. Using the previously introduced quantities, the
measures are used to evaluate sound zone performance as follows:

• PESQ, STOI and SIIB of the Total Achieved Sound Pressure with
respect to the Target Sound Pressure:
Corresponds to the quality/intelligibility of the achieved sound pressure, in-
cluding interference, and will be referred to as the “total PESQ”, “total
STOI” and the “total SIIB” per control point m.
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• PESQ, STOI and SIIB of the Achieved Bright Zone Sound Pressure
with respect to the Target Sound Pressure:
Corresponds to the quality/intelligibility of the achieved sound pressure sans
interference. This quantity is referred to as the “bright zone PESQ”,
“bright zone STOI” and “bright zone SIIB” per control point m for
zone Z.

5.1.2.2 Perceptual Interference Measure

Another metric that will be used for evaluation is the Distraction model also in-
troduced in Section 2.1.1. This model grades how distracting an interferer is in
the presence of target audio. The grade uses a scale from 0 to 100, where 100 is
considered maximally distracting.

The distraction will be used as follows:

• Distraction of achieved Dark Zone Sound Pressure with respect to
the Achieved Bright Zone Sound Pressure:
This quantifies how distracting the dark zone sound pressures are when listen-
ing to the bright zone sound pressure per control point m. This will simply be
referred to as the “Distraction” per control point m.

5.1.2.3 Physical Measures

One physical measure is the acoustic contrast (AC) between the achieved bright
zone sound pressure, and the achieved dark zone sound pressure can be used as
a non-perceptual measure of interference. Initially introduced in Section 3.2, the
acoustic contrast between two time-domain sequences x[n] ∈ RN and y[n] ∈ RN is
given as follows:

AC(x, y) = 10 log10

(
||x[n]||22
||y[n]||22

)
. (5.1)

Another non-perceptual metric that can be used to evaluate the quality of the result
is the normalized mean square error (NMSE). The NMSE of the deviation of time
sequence x[n] from reference time sequence y[n] is given as:

NMSE(x, y) = 10 log10

(
||y[n]− x[n]||22
||y[n]||22

)
. (5.2)

Note that both physical quantities are given in decibels. These physical measures
are used to evaluate sound zone performance as follows:

• NMSE of the Total Achieved Sound Pressure with respect to the
Target Sound Pressure:
Describes the NMSE between the target and achieved sound pressure and will
be referred to as the “total NMSE”.

• NMSE of the Achieved Bright Zone Sound Pressure with respect to
the Target Sound Pressure:
This is the NMSE between the target and the achieved sound pressure sans
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interference and will henceforth be referred to as the “bright zone NMSE”
per control point m.

• Acoustic contrast between the Achieved Bright Zone Sound Pres-
sure and the Achieved Dark Zone Sound Pressure:
This measure quantifies the ratio of the acoustic potential energy of the bright
zone and of the dark zone. From here on referred to as the “Acoustic Con-
trast” per control point m.
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Measure
Unconstrained Perceptual PM

Mean (± 95% CI)
Reference PM

Mean (± 95% CI)

Total PESQ 3.154± 0.081 2.609± 0.084
Bright Zone PESQ 3.345± 0.087 4.107± 0.051
Total STOI 0.943± 0.003 0.940± 0.006
Bright Zone STOI 0.950± 0.003 0.989± 0.001
Total SIIB 1114.306± 23.762 893.225± 63.815
Bright Zone SIIB 1260.117± 14.290 1311.041± 12.333
Total NMSE −4.929± 0.235 dB −13.529± 0.856 dB
Bright Zone NMSE −5.241± 0.248 dB −16.600± 0.875 dB
Distraction 7.828± 1.868 12.693± 3.405
Acoustic Contrast 13.258± 0.379 dB 16.075± 0.936 dB

Table 5.1: Summary of the results of the evaluation of the unconstrained perceptual pressure
matching approach and the reference pressure matching approach using the evaluation metrics
defined in Section 5.1.

5.2 Evaluation of Proposed Algorithms

In Section 4.2 two perceptual sound zone algorithms are proposed. First, an uncon-
strained perceptual pressure matching approach in which the detectability of the
sound pressure errors is minimized. Secondly, a constrained perceptual pressure
matching approach leverages the fact that the detectability has a consistent percep-
tual interpretation to constrain the detectability of the reproduction error.

This section will evaluate the results of the performed experiments for both pro-
posed approaches. To this end, Section 5.2.1 the unconstrained perceptual pressure
matching approach is evaluated, and in Section 5.2.2 the constrained perceptual
pressure matching approach is evaluated.

In order to effectively describe various points in the room from the simulations, the
control points numbering given by Figure 5.1 is used.

5.2.1 Evaluating Unconstrained Perceptual Pressure Matching

In this section, the unconstrained perceptual pressure matching algorithm will be
evaluated in accordance to the approach discussed in Section 5.1. This is done
by first evaluating the results of the simulations of the various setups quantita-
tively through the proposed measures. From this, conclusions are drawn, which are
then motivated qualitatively by reasoning about algorithm behavior by considering
waveforms generated by the investigated algorithms.

Quantitative Analysis of Simulation Results

In order to quantify the performance of the unconstrained perceptual pressure
matching approach, the various measures introduced in Section 5.1 are determined
for all 12 simulations. The measures are averaged over all simulations and each
control point. For comparison purposes, the reference pressure matching approach
is simulated and evaluated in an identical fashion.
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The results of this experiment is summarized in Table 5.1. This table depicts the
mean and 95% confidence interval of the measures taken over all four control points
and all six unique experiments. As discussed in Section 2.1, it is important to
note that the perceptual measures can only be used as an indication, and further
listening tests must be performed to draw any real conclusions.

From the results in the table, the following observations are made:

1. The perceptual approach outperforms the reference in two perceptual measures
evaluating the total experience: total PESQ and SIIB attain higher values for
the perceptual approach. The perceptual approach also attains a higher value
for STOI, however, the values are too close to draw any real conclusions.

Note that these measures evaluate the total experience, taking into consider-
ation the total sound pressure per control point, including interference. This
implies that the perceptual approach may result in an overall better perceptual
experience.

2. The perceptual approach outperforms the reference in terms of the perceptual
distraction measure, implying that the interference in the perceptual approach
may be less distracting

3. The reference approach outperforms the perceptual approach in perceptual
measures evaluating the bright-zone quantities: bright zone PESQ, STOI, and
SIIB are all higher for the reference approach. Note that these measures are
sans interference: they only evaluate how well the achieved sound pressure
attains the target, ignoring interference.

This implies that disregarding interference, the reference approximates the
target more effectively perceptually. However, from Item 1 it is known that
the total experience results in a better quality of experience.

This implies that, although the reference algorithm approximates the target
better perceptually, the interference that it introduces a sufficient disturbance
to be outperformed by the reference.

4. The reference approach outperforms the perceptual approach for all physical
measures: total and bright zone NMSE and acoustic contrast. This is to be
expected, as the reference approach optimizes the NMSE directly.

Interestingly, although the total NMSE is lower, the reference is outperformed
in terms of all total perceptual measures, as discussed in Item 1.

In addition to this, the acoustic contrast between intended and interfering
sound pressure for the reference approach is over twice as large as the per-
ceptual approach. Nevertheless, the perceptual approach is less distracting
according to the distraction model as discussed in Item 2.

These results imply that NMSE or AC may not be optimal measures for the
evaluation of the perceptual experience of sound zones.

In summary, from the observations above, it is concluded that the perceptual sound
zone algorithm may outperform the reference sound zone algorithm in terms of
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perceptual experience. This seems to be due to the perceptually disturbing inter-
ference introduced by the reference algorithm. As such, the perceptual algorithm
seems to make a better perceptual trade-off between reproduction of the target
sound pressure and suppression of the interference than the reference.

This is because, when disregarding noise, the reference algorithm has a better repro-
duction of the target perceptually. However, when the noise is added, the reference
algorithm gets outperformed by the perceptual approach. The distraction ratings
also indicate that the noise introduced by the reference algorithm is more distract-
ing.

Analyzing Algorithm Behavior

In the preceding section, the reference and perceptual algorithms are compared
quantitatively. Results indicate that the perceptual algorithm outperforms the ref-
erence in terms of the total experience. This section considers the behavior of the
algorithm in an attempt to explain these results.

To this end, consider Figure 5.2. This figure contains a plot of the waveforms
of the target sound pressure and achieved dark-zone sound pressure for both the
perceptual and non-perceptual variants of pressure matching for control point m = 2
(see: Figure 5.1) from the experiments.

The selected control point is in zone A. As explained in Section 5.1, the achieved
dark-zone sound pressure can be understood as the interference due to another zone,
in this case, zone B.

Consider the highlighted region for the perceptual algorithm. From this, it can be
seen that the magnitude of the interference is correlated to the magnitude of the
target sound pressure for zone A. Contrast this to the highlighted region for the
reference algorithm, where the interference is at a relatively constant level.

This may explain why, while having lower overall contrast, the perceptual approach
outperforms the reference approach in terms of distraction and overall perceptual
experience. When determining the interference for control point m = 2, the per-
ceptual algorithm takes the target sound pressure for A into account. Effectively,
when the target sound pressure is relatively loud, more interference is allowed as it
is masked to a degree by the target sound pressure.

In doing so, the interference is less detectable and thus perceptually less disturbing,
which serves as a possible explanation to the results given in Section 5.2.1

5.2.2 Evaluating Constrained Perceptual Pressure Matching

This section details the evaluation of the constrained perceptual pressure match-
ing algorithm discussed in Section 4.2.2. As discussed, this algorithm minimizes
the detectability of the leakage error whilst constraining the detectability of the
reproduction error.

This leverages the fact that the Par detectability has a perceptual interpretation.
That is to say, if two disturbances result in the same detectability, this should mean
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Figure 5.2: Depiction of the wave forms of the target sound pressure and achieved dark zone sound
pressure for the unconstrained perceptual pressure matching approach and the reference pressure
matching approach.

that they are equally detectable perceptually. As such, using the detectability of
the reproduction errors in constraints could allow for more precise control over the
quality of the reproduced audio.

Traditional pressure matching approaches such as the reference pressure matching
algorithm can also attempt to constrain the reproduction error. However, the refer-
ence pressure matching algorithm uses the mean square sound pressure error rather
than detectability, which does not always correlate well with perception. That is to
say; two mean square pressure errors can vary widely perceptually.

This section seeks to explore the degree of control that the reproduction error de-
tectability constraints provide. In this case, no comparison is made to the reference.
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Instead, the measures defined in Section 5.1 are used to determine the performance
of the constrained perceptual pressure matching approach for varying constraint val-
ues. Afterward, a qualitative analysis of the algorithm is given through waveforms
in order to motivate the quantitative results.

Quantifying Algorithm Performance

As mentioned, the goal is to analyse the behavior the constrained perceptual pres-
sure matching algorithm introduced in Section 4.2.2 for various values of the con-
straint D0 shown in Equation (4.20). To quantify the performance of the algorithm,
the measures introduced in Section 5.1 are used.

Consider Figure 5.3, where the results of the experiments for the constrained per-
ceptual pressure matching algorithm are depicted for different values of D0. The
measures as depicted are averaged over all six unique experiments and over each
of the four points in the room. The error bars indicate the 95% confidence inter-
vals.

The following observations are made:

1. It can be seen that the bright zone PESQ, NMSE, STOI, and SIIB are all
strictly decreasing or increasing as a function of D0. Recall that the bright
zone quantities refer to the reproduction of the intended target sound pressures
sans interference. Thus, increasing the constraints correlates with a lowering of
the quality of the reproduced target perceptually. This makes sense, as higher
D0 allows for a more detectable reproduction error.

2. It can be seen that the total PESQ, STOI, and SIIB are not strictly decreasing
functions of D0. The total quantities refer to the perceptual quality of all the
sound pressure in the control points, including interference. Interestingly, the
measures peak at a constraint value D0 of about 3 or 5.

This effect is likely due to the interference introducing considerable perceptual
distortion, as the achieved sound pressure sans interference is strictly decreas-
ing. Low values of the constraint limit the deviation from the target sound
pressure and thus limit how much interference suppression can take place.

For high values of D0, the total and bright zone quantities converge to one
another. This corresponds to the interference being so small that it is percep-
tually irrelevant.

3. From the distraction plot, it can be seen that for lower constraint values, the
distraction decreases as a function of D0. At a constraint value of about 15,
the distraction starts increasing again.

The rise in distraction can potentially be explained by a decrease in achieved
bright zone sound pressure energy. One way of reducing the amount of interfer-
ence is by decreasing the bright zone sound energy. As such, the algorithm has
an incentive to do so. Increasing constraint values D0 allows for larger repro-
duction errors, which allow for a lower-energy representation of the achieved
bright zone sound pressure. Thus, the increase in distraction may be due to a
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decrease in achieved bright zone sound pressure energy without a meaningful
decrease of interference.

This effect can also be observed through the mean acoustic contrast, however,
due to the size of the error bars are it is difficult to draw a conclusion based
on these results.

From the observations above, it is concluded that perceptually constrained pressure
matching allows for a degree of control of the perceived quality of the bright zone
sound pressure. This can be seen in the small confidence intervals and from the ob-
servation in Item 1 where it is shown that the bright zone measures are all a strictly
decreasing functions of the constraint value D0. However, as given by Item 2, the
total perceived quality (including interference) is not a strictly decreasing function
of D0, so the constraint must be chosen carefully.

Finally, it is shown in Item 3 that the distraction can be controlled to a degree
through the constraint values D0, as the distraction is a strictly decreasing function
of D0 for low constraint values. Higher constraint values seem to increase the
distraction. It is theorized that this is due to there being diminishing returns in
increasing the constraint D0, as the interference is not decreased in a perceptually
meaningful way. This can be seen from the convergence of the bright zone and
the total perceptual measures as discussed in Item 2. Furthermore, the bright zone
sound pressure energy is theorized to be decreased due to the further relaxation of
the constraints.

Analyzing Algorithm Behavior

In the previous section, it is hypothesized that the perceptually constrained pressure
matching approach allows for accurate control of the perceived sound pressure. This
section explores the effects that increasing the value of D0 has on the waveforms of
the bright zone sound pressure and the dark zone sound pressure.

To this end, consider Figure 5.4. This plot depicts wave forms for control point m =
2 in zone A for one of the experiments for different values of the constraint D0.

As can be seen from the plots on the right-hand side, increasing the constraint
value D0 seems to reduce the interference. This makes sense, as increasing the
constraint relaxes the required reproduction error detectability and allows for more
interference suppression.

Interestingly, one can see the frequency-weighting that occurs in Par detectability.
As discussed in Section 2.3.3, the Par detectability has a low perceptual weighting
for lower frequencies due to the threshold of hearing. As can be seen, for D0 = 1,
many high frequencies are still present in the achieved dark zone sound pressure.
For D0 = 21, only lower frequencies remain.

The achieved bright zone sound pressures on the left-hand side provide evidence for
the claim that the achieved bright zone sound pressure decreases with increasing
constraints. When compared to the target for that zone, the total energy present
seems to decrease greatly between constraint values D0 = 1 and D0 = 21.
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5.3 Comparison with Approaches from Literature

In this section, the results obtained in this work are contrasted with other perceptual
sound zone approaches from the literature.

In prior work by Lee et al., the signal-adaptive perceptual variable span trade-
off (AP-VAST) perceptual sound zone approach was proposed [4, 5]. Here, the
existing variable span trade-off (VAST) sound zone framework is extended with a
time-domain perceptual weighting filter. The perceptual weighting is determined
by the reciprocal of the masking curves of the target sound pressure [5].

As such, the approach by Lee et al. and the proposed approaches are similar. The
approach by Lee et al., however, does not directly optimize over a perceptual model
as is done in the proposed approach. Therefore, the perceptual interpretation of
the cost function, which enables the perceptually motivated constraints proposed
in this work may not be preserved when using AP-VAST.

Similarly to this work, the AP-VAST framework was shown to outperform a refer-
ence pressure matching and acoustic contrast control approach in terms of PESQ
and STOI [4]. In addition to this, Lee et al. showed through a MUSHRA listening
test that the perceptual approach had a 20% better performance than existing non-
perceptual approaches [5]. Due to differences in setups, the approach by Lee et al.
and the approaches proposed in this paper cannot be directly compared. One way
to effectively compare the two approaches is through listening tests.

In other work, Donley et al. showed how sound zones could be constructed by
optimizing over the speech intelligibility contrast (SIC) between zones to improve
the speech privacy [3, 38, 39]. This is similar to the approach done in this work, as
the sound zones are constructed by direct optimization of a perceptual model.

Optimizing for speech privacy, however, also allows for the addition of white noise in
order to increase privacy. As such, while the proposed approach and the approach
by Donley et al. are similar mathematically, the outcomes are quite different and,
therefore, difficult to compare.
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Figure 5.3: Plots depicting the various perceptual and physical measures introduced in Section 5.1
for various values of the constraint D0 of the constrained perceptual pressure matching algorithm
given by Equation (4.20). All measures all averaged over all 4 control points (see Figure 5.3) and
all 12 simulations. The error bars show the first standard deviation in the data.
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Figure 5.4: Plots depicting waveforms of the perceptually constrained pressure matching approach
introduced in Section 4.2.2 for varying constraint values of D0. The wave forms are taken from
the experiment detailed in Section 5.1, and depict control point m = 2 in zone A from Figure 5.1.
The left plots depict the achieved bright zone sound pressure for m = 2 and the right plots the
achieved dark zone sound pressure, or interference, for that same control point.
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Chapter 6

Conclusion

Sound zone algorithms attempt to control the spatial distribution of sound in order
to create zones with distinct audio content in a room. This work aims to explore
how a perceptual model of the human auditory system can be integrated into the
cost function of sound zone algorithms and what benefits this may have.

In the first research question RQ1, we sought to answer:

“How can auditory perceptual models be included in sound zone algorithms?”.

In this work, it is shown that a perceptual sound zone algorithm can be stated
directly using a perceptual sound zone framework based on the Par detectability
distortion perceptual model and pressure matching sound zone approach. This
sound zone framework uses the perceptual model to determine how perceptually
detectable the errors in sound pressure are.

The framework is used in this work to propose two sound zone algorithms. The
first algorithm, “unconstrained perceptual pressure matching”, in which the to-
tal detectability of the sound pressure errors is minimized. The other algorithm,
“constrained perceptual pressure matching”, in which the detectability of the inter-
ference between zones is minimized while constraining the detectability of error in
the reproduced audio.

The second research question RQ2 is posed as follows:

“What are the benefits of including auditory perceptual models in sound zone
algorithms?”.

This work sought to answer this question by investigating the properties of the
two proposed perceptual sound zone algorithms, and comparing it with a reference
non-perceptual pressure matching approach. Findings suggest that the benefits of
including perceptual models in sound zone algorithms are twofold:

• The work indicates that the proposed unconstrained perceptual pressure
matching outperforms the non-perceptual pressure matching in terms of per-
ceptual speech measures PESQ, STOI, SIIB, and Distraction. Investigation
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indicates that one possible reason for this is that the interference introduced
by the reference algorithm is more perceptually disturbing.

• The work shows that proposed constrained perceptual pressure matching allows
for control over the perceived quality of the sound in the zones. By leveraging
the perceptual interpretation of the Par distortion detectability, one can specify
the desired minimum level of quality. This work shows that the perceptual
constraint correlates directly with the quality that is reproduced.

This is a challenge for non-perceptual sound zone approaches as the cost func-
tions are typically constructed using physical measures. These physical mea-
sures have no consistent perceptual interpretation, meaning that the same
constraints can lead to widely varying perceptual results.

While this work successfully answers its research questions, there are still many
promising directions of perceptual sound zones research. The following future work
is found to be of interest:

• As discussed, it is shown that the unconstrained perceptual pressure matching
algorithm outperforms the reference non-perceptual pressure matching algo-
rithm in terms of various objective perceptual measures. However, as discussed
in Section 2.1, these objective measures can only be used to give an indication
of performance.

To objectively determine if the perceptual approach does indeed outperform
traditional approaches, formal listening tests must be conducted.

• As shown, the constrained perceptual pressure matching approach can be used
to control the reproduced audio quality through the detectability of the re-
production error. However, the degree to which this is possible with a non-
perceptual pressure matching approach is not explored in this work.

It is of interest to compare the performance of perceptual and non-perceptual
constraints to obtain a complete understanding of the differences.

• The proposed perceptual sound zone framework can be used to formulate more
perceptual sound zone algorithms. One algorithm that is of particular interest
is an algorithm that constrains the detectability of the interference rather than
the reproduction error. This can then be readily compared to non-perceptual
pressure matching approaches, which often include a similar, non-perceptual
constraint.

• Currently, the proposed perceptual sound zone algorithms are posed as opti-
mization problems that use both time and frequency domain representations
of the optimizers. The translation between domains is suspected to greatly
increase the computational complexity of the algorithm.

As such, it is of interest to obtain a version of the algorithm that operates in
a single domain to reduce the computational complexity.
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Appendix A

Calibration of the the Par
Detectability Measure

Calibration is necessary for the Par detectability to provide the correct output. In
the previous section, it was shown that the constants Ca and Cs are used to this
end. Correct calibration of the Par detectability must satisfy the following:

1. The just noticeable disturbance signal must result in a detectability of 1.

2. The threshold of hearing takes effect appropriately.

Both the concepts of just noticeable distortion and the threshold of hearing require
knowledge of the sound pressure level of the stimuli. Thus, before determining the
calibration coefficients, it is important to first discuss the relationship between the
input signals x[n] and ε[n] and reproduced sound pressure level. This is the topic
of Appendix A.1. Afterwards, Appendix A.2 discusses the determination of the
coefficients Ca and Cs.

A.1 Relating Digital Representation and Sound Pressure
Level

One difficulty of taking the threshold of hearing into account is that it is typically
given in terms of sound pressure level (SPL), measured in dB. The one-sided spec-
trum of the threshold of hearing in dB SPL can be approximated by the following
function [6]:

Tq(f) = 3.64

(
f

1000

)−0.8

+ 0.001

(
f

1000

)4

−6.5 exp

[
−0.6

(
f

1000
− 3.3

)2
]

(A.1)

The signals x[n] and ε[n] are however given digital representation of audio.

For example, they might be given in a pulse code modulated (PCM) format within
which they attain integer values between -32768 and 32767.

As such, to meaningfully integrate the threshold of quiet, the digital representation
and the sound pressure levels must be related. This relationship can be modeled as
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follows:
XdB(f) = 10 log10(|X(f)|2) +OdB (A.2)

Here, XdB(f) is the dB SPL representation of a given spectrum X(f). Furthermore,
OdB is an offset to ensure the digital representation corresponds to the correct
sound pressure level. In order to use this relationship to determine the appropriate
digital equivalent of the threshold in quiet, a definition of the offset OdB must be
determined.

One way of determining the offset OdB is by relating the sound pressure level and
the digital representation of a full-scale sinusoid. A full-scale sinusoid is a sinusoid
that has an amplitude of the maximum value that can be attained in the digital
representation.

In our previous example, one way of doing so would be to state that a full-scale
sinusoid with amplitude 32767 corresponds to e.g., a sound pressure level of 100 dB
SPL. The interpretation of this is that playing a full-scale sinusoid will result in a
sound pressure of 100 dB SPL when played from the sound system.

To do so, let the digital representation of the full-scale sinusoid be modeled by
a sinusoid with amplitude A and frequency f0. Consider the one-sided fourier
representation of the digital representation of this full-scale sinusoid:

F {A cos (2πf0t)} = Aδ (f − f0) (A.3)

It is assumed that playing the digital representation of this sinusoid results in
a sound pressure level of AdB dB SPL. Substituting these definitions into Equa-
tion (A.2) results in the following definition for OdB:

OdB = 10 log10

(
|A|2

)
− AdB (A.4)

The offset fully defines the relationship between digital representation and sound
pressure level, and allows for the conversion of the threshold of hearing to digital
representation.

A.2 Determining Calibration Constants

There are various ways of calibrating this model, but this section will discuss the
method of calibrating that is given in the original paper [7]. The given approach
is to find the two unknowns Ca and Cs by solving a system of two equations that
model the previously stated calibration requirements.

The first requirement is that a just noticeable disturbance signal must result in a
detectability of 1. From perceptual literature, it is known that a sinusoidal distur-
bance signal at a given frequency f0 is just noticeable in the presence of an in-phase
sinusoidal masking signal that is 18 dB SPL louder [7]. To model this, consider the
following masking and disturbance signals.

xJND[n] = A70 cos (2πf0n/fs) (A.5)

εJND[n] = A52 cos (2πf0n/fs) (A.6)
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Here, xJND[n] is a sinusoid with an amplitude A70, which corresponds to 70 dB
SPL. Furthermore, εJND[n] is a sinusoid with an amplitude A52, which is 18 dB
SPL less. Note that the amplitudes are both given in digital representation, not
sound pressure level representation. The digital representation amplitudes are found
through Equation (A.2).

Thus, εJND[n] must be just noticeable in presence of xJND[n]. This can be expressed
as follows:

D(xJND[n], εJND[n]) = 1 (A.7)

This expression forms the first equation in the system of equations that can be
solved to calibrate the Par detectability.

The second requirement is that the threshold of hearing must be included correctly.
The threshold of hearing defines the sound pressure levels that are the verge between
audible and inaudible sound as a function of frequency. To this end, consider the
following masking and disturbance signals:

xTHR[n] = 0 (A.8)

εTHR[n] = Atq cos (2πf0n/fs) (A.9)

Here the masking signal xTHR[n] is zero. The disturbance signal is a sinusoid of
frequency f0 with amplitude Atq, which is chosen such that it attains the threshold
of quiet at f0, i.e. Tq(f0).

As the threshold of quiet is the verge between audible and inaudible sound, it is
assumed that a disturbance signal in the presence of no masking signal that has
an amplitude equal to the threshold of quiet is just noticeable. Recall that for just
noticeable stimuli, the detectability must be equal to 1. This allows us to specify
the second equation in the system of equations:

D(0, εTHR[n]) = 1 (A.10)

The system of equations defined by Equation (A.7) and Equation (A.10) can be
solved through the bisection method. To see how this is done, the reader is referred
to the original paper [7].
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